Chứng minh : |ab|=|a|.|b|
cho hình vẽ
Biết AB//CD
AB=CD
A) chứng minh ΔABC=ΔCDB
B) chứng minh AD=BC
C) chứng minh AD//BC
b: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó:ABCD là hình bình hành
Suy ra: AD=BC
Có: a ⊥ c; m ⊥ c; C1̂ = 20o; A1̂ = 70o; B1̂ = 70o Điểm I là trung điểm của đoạn AB a) Chứng minh: a // b; c ⊥ b b) Chứng minh: Tính số đo D1̂ c) Chứng minh: IC là đường trung trực của đoạn thẳng AB.
Chứng minh rằng A=a5b-ab5=ab(a+b)(a-b)(a2+b2) và chứng minh A chia hết cho 30
Ta có \(A=a^5b-ab^5=a^5b-ab-ab^5+ab\)
\(A=\left(a^5b-ab\right)-\left(ab^5-ab\right)\)
\(A=b\left(a^5-a\right)-a\left(b^5-b\right)\)
Ta có \(m^5-m=m\left(m^4-1\right)=m\left(m^2-1\right)\left(m^2+1\right)\)
\(=m\left(m+1\right)\left(m-1\right)\left(m^2-4+5\right)\)
\(=m\left(m-1\right)\left(m+1\right)\left(m^2-4\right)-5m\left(m-1\right)\left(m+1\right)\)
\(=m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)-5m\left(m-1\right)\left(m+1\right)\)
\(=\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)-5\left(m-1\right)m\left(m+1\right)\)
Vì \(m-2;m-1;m;m+1;m+2\) là 5 số nguyên liên tiếp nên chia hết cho 2 ; 3 ; 5
Mà \(\left(2;3;5\right)=1\)
\(\Rightarrow\left(m-2\right)\left(m-1\right)m\left(m+1\right)\left(m+2\right)\) chia hết cho \(2\times3\times5=30\)
\(\Rightarrow m^5-m\) chia hết cho 30
\(\Rightarrow a^5-a\) và \(b^5-b\) Chia hết cho 30
\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)\) chia hết cho 30
\(\Rightarrow A=a^5b-ab^5\) chia hết cho 30
Vậy A chia hết cho 30
: Cho AB = 3cm. Đường trung trực của đoạn thẳng AB cắt AB tại M. Kẻ đường thẳng a vuông góc với AB tại A, đường thẳng b vuông góc với AB tại B. Qua điểm E bất kỳ trên đường thẳng a, vẽ đường thẳng song song với AB, đường thẳng đó cắt b tại F.
a) Chứng minh rằng: a // b.
b) Chứng minh rằng: EF FB.
c) Chứng minh rằng: đường thẳng MF cắt đường thẳng a
Cho tam giác ABC vuông tại A có AH là đường cao. V ẽ H D ⊥ A B ( D ∈ A B ) . H E ⊥ A C ( E ∈ A C ) . A B = 12 c m , A C = 16 c m
a) Chứng minh : Δ H A C ~ Δ A B C
b) Chứng minh : A H 2 = A D . A B
c) Chứng minh : A D . A B = A E . A C .
a) Xét ΔHAC và ΔABC có:
∠(ACH ) là góc chung
∠(BAC)= ∠(AHC) = 90o
⇒ ΔHAC ∼ ΔABC (g.g)
b) Xét ΔHAD và ΔBAH có:
∠(DAH ) là góc chung
∠(ADH) = ∠(AHB) = 90o
⇒ ΔHAD ∼ ΔBAH (g.g)
c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.
⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)
Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)
∠(DEA)= ∠(BAH)
Xét ΔEAD và ΔBAC có:
∠(DEA)= ∠(BAH)
∠(DAE ) là góc chung
ΔEAD ∼ ΔBAC (g.g)
d) ΔEAD ∼ ΔBAC
ΔABC vuông tại A, theo định lí Pytago:
Theo b, ta có:
Cho đường tròn (O;R) và đường tròn (I;r) cắt nhau tại A và B. Đoạn thẳng AB cắt đoạn thẳng OI tại H
A, chứng minh: AD=BC
B, chứng minh: AD// BC
C, chứng minh: AB=CD
D, chứng minh: AB//CD
Cho Cho tam giác ABC phần a biết AB = 30 cm AC bằng 40 cm Tính BC phần b trên tia ab lấy D sao cho AD = AC tia đối của AC lấy E sao cho AB = a Chứng minh a = b c phần D Chứng minh AE vuông góc với cả b c phần D Chứng minh AB vuông góc với CD
Cho hình chữ nhật ABCD có tâm O. Biết 5 , 12 . AB a AD a a. Chứng minh rằng: AC AB OC OD b. Chứng minh rằng: AB AD BC CD
Cho tam giác cân ABC(AB=AC). vẽ các đường cao BH, CK, AI
a, chứng minh BK=CH
b, chứng minh HC.AC=IC.BC
c, chứng minh KH//BC
d, cho biết BC=a, AB=AC=b. tính độ dài đoạn thẳng HK theo a và b
a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)
Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔAIC\(\sim\)ΔBHC(g-g)
Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CA\cdot CH=CB\cdot CI\)(đpcm)
c) Ta có: BK=HC(cmt)
AB=AC(ΔABC cân tại A)
Do đó: \(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)
Xét ΔABC có
K\(\in\)AB(gt)
H\(\in\)AC(gt)
\(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)(cmt)
Do đó: KH//BC(Định lí Ta lét đảo)
a) Xét tam giác ABC có A+B+C=180o(tổng 3 góc của 1 tam giác )
mà A=90o,B=60o
=>C=180o-90o-60o=30o
vậy C=30o
Xét tam giác BMA và tam giác DMC có:
MB=MD(gt)
MA=MC(M là trung điểm của BC)
ABM=CMD(đối đỉnh)
=>tam giác BMA= tam giác DMC(c.g,c)
c) Vì tam giác BMA= tam giác DMC(câu b)
=> AB=CD(2 góc tương ứng)