Ai biết cách xác định điểm rơi trong bất đẳng thức bày mình với
Giúp mik với ạ. Với cả bạn nào biết cách xác định hằng đẳng thức nhanh nhất không chỉ mik với.
6) Ta có: \(12x^2y+6xy^2+8x^3+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
8) Ta có: \(108x^2y+144xy^2+64y^3+27x^3\)
\(=\left(4y\right)^3+3\cdot\left(4y\right)^2\cdot3x+3\cdot4y\cdot\left(3x\right)^2+\left(3x\right)^3\)
\(=\left(4y+3x\right)^3\)
Cho hai tia Ax và By không song song và điểm M bất kỳ. Không xác định giao điểm của Ax và By, dựng đường thẳng qua M vuông góc với tia phân giác của góc giữa Ax và By.
(Trình bày cách làm ra giùm mình nha! ♥ )
Cho tam giác ABC vuông tại A. Trên AB,AC lấy lầ lượt hai điểm D,E. Chứng minh DE < BC ( chứng minh theo cách bất đẳng thức trong tam giác giúp mình với)
Cho tam giác ABC.
a. Xác định điểm M thoả mãn đẳng thức vectơ: 2 vecto MA - vecto MB + vecto MC = vecto 0
b. Chứng minh rằng: 2 vecto OA - vecto OB + vecto OC = 2 vecto OM với điểm O bất kỳ
chứng minh bất đẳng thức:.1/a+1/b+1/c>=9/(a+b+c)
Ko áp dụng bđt cô-si có làm đc ko mn (ko giải cách lớp 9 nha). Ai có câu trả lời chính xác mình cho 3 tk.
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
1/a + 1/b + 1/c ≥ 9/(a+b+c)
<=> (1/a + 1/b + 1/c )(a+b+c) ≥ 9
Ta có : 1/a + 1/b + 1/c ≥ 3.căn bậc 3 1/abc
a+b+c ≥ 3 căn bậc 3 abc
(1/a + 1/b + 1/c)(a+c+c) ≥ 9 căn bậc 3 abc/abc = 9
<=> 1/a + 1/b + 1/c ≥ 9(a+b+c)
Dấu ''='' xảy ra khi : a=b =c
Đối với bất đẳng thức ta cung có tính chất sau đây ( tương tự như đối với đẳng thức ):
Nếu a > b thì a + c > b + c.
Nếu a + c > b + c thì a > b.
Hãy phát biểu qui tắc trong bất đẳng thức.
HELP ME! Ai nhanh mình tick cho ^^.
Trong toán học, một bất đẳng thức là một phát biểu về quan hệ thứ tự giữa hai đối tượng.
· Ký hiệu a<b có nghĩa là a nhỏ hơn b và
· Ký hiệu a > b có nghĩa là a lớn hơn b.
Những quan hệ nói trên được gọi là bất đẳng thức nghiêm ngặt; ngoài ra ta còn cócác bất đẳng thức không ngặt :
· có nghĩa là a nhỏ hơn hoặc bằng b và
· có nghĩa là a lớn hơn hoặc bằng b.
Người ta còn dùng một ký hiệu khác để chỉ ra rằng một đại lượng lớn hơn rất nhiều so với một đại lượng khác.
Ký hiệu a >> b có nghĩa là a lớn hơn b rất nhiều.
Các ký hiệu a, b ở hai vế của một bất đẳng thức có thể là các biểu thức của các biến. Sau đây ta chỉ xét các bất đẳng thức với các biến nhận giá trị trên tập số thực hoặc các tập con của nó.
Nếu một bất đẳng thức đúng với mọi giá trị của tất cả các biến có mặt trong bất đẳng thức, thì bất đẳng thức này được gọi là bất đẳng thức tuyệt đối hay không điều kiện. Nếu một bất đẳng thức chỉ đúng với một số giá trị nào đó của các biến, với các giá trị khác thì nó bị đổi chiều hay không còn đúng nữa thì nó được goị là một bất đẳng thức có điều kiện. Một bất đẳng thức đúng vẫn còn đúng nếu cả hai vế của nó được thêm vào hoặc bớt đi cùng một giá trị, hay nếu cả hai vế của nó được nhân hay chia với cùng một số dương. Một bất đẳng thức sẽ bị đảo chiều nếu cả hai vế của nó được nhân hay chia bởi một số âm.
Hai bài toán thường gặp trên các bất đẳng thức là
1. Chứng minh bất đẳng thức đúng với trị giá trị của các biến thuộc một tập hợp cho trước, đó là bài toán chứng minh bất đẳng thức.
2. Tìm tập các giá trị của các biến để bất đẳng thức đúng. Đó là bài toán giải bất phương trình.
3. Tìm giá trị lớn nhất,nhỏ nhất của một biểu thức một hay nhiều biến.
*mik~ viết~ đại ~zậy~ hoy *
pn cố gắng trích ra nhé :)))
Chúc pn hok giỏi nhoaa!!!!!!!
Chứng minh bất đẳng thức Cô-si với n số không âm.
1) chứng minh bất đẳng thức Bu-nhi-a-cốp-ski với bộ n số.
Ai nhanh mình tick!^_^
bài 1:cho \(x\ge2\).Tìm min \(A=x+\frac{1}{x^2}\)
(ÁP DỤNG KỸ THUẬT DÙNG ĐIỂM RƠI-BẤT ĐẲNG THỨC CÔ-SI)
các bạn giúp mình với
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
Từ 2016 điểm bất kỳ nối với nhau tạo thành 1 đoạn thẳng.Hỏi 2016 điểm phân biệt có thể nối được tất cả bạo nhiêu đoạn như thế????
Có cả cách trình bày nhé!!!!!
Ai có cách trình bày và đúng mình sẽ tích nhiều
\(\frac{2016.\left(2016+1\right)}{2016}=2017\)
Vậy có 2017 đường thẳng