Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy tạ
Xem chi tiết
Nguyen pham truong thinh
Xem chi tiết
Trần Thị Loan
12 tháng 11 2015 lúc 19:12

A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)

A= 2 + A 

=> A- A - 2 = 0 

=> A - 2A + A - 2 = 0 

=> A(A - 2) + (A - 2) = 0 

=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1

Mà A > 0 nên A = 2

 

Tống Thị Thủy Tiên
Xem chi tiết
fu adam
Xem chi tiết
Trịnh Quang Hùng
3 tháng 10 2015 lúc 19:35

Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\)  nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)

hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)

Vì A>0 nên A=2

tick nha 

My Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 16:57

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0

\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)

\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)

Vậy A = 2

Nguyễn Hoàng Tiến
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 5 2016 lúc 20:23

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)

Nhận xét : A > 0

Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)

\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)

Vì A > 0 nên ta chọn A = 2 

Vậy giá trị của biểu thức là : A = 2

Minh Triều
26 tháng 5 2016 lúc 20:21

Đặt A= biểu thức đó

=>A^2= 2+ A

=>A^2-A-2=0

Giải PT tìm ra A 

p/s: lấy A>0 thôi

Trần Ngọc Hân
26 tháng 5 2016 lúc 20:22

=1+1+1+.....................(vô vàn số 1)

Big City Boy
Xem chi tiết
tamanh nguyen
Xem chi tiết
ILoveMath
1 tháng 12 2021 lúc 16:12

\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)

\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)

\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)

 

ILoveMath
1 tháng 12 2021 lúc 16:15

\(ab^2\sqrt{a}=\sqrt{a^3b^4}\)

Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
10 tháng 4 2021 lúc 22:33

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

Khách vãng lai đã xóa
Trần Lê Quốc Việt
29 tháng 5 2021 lúc 6:59
Khách vãng lai đã xóa
Nguyễn Mai Hằng
6 tháng 6 2021 lúc 8:54

undefined

Khách vãng lai đã xóa