giá trị của biểu thức \(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) (có vô hạn dấu căn) là ...
cần gấp nhe...
giá trị của biểu thức:\(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\)có vô hạn dấu căn là...
Giá trị của biểu thức A = \(\sqrt{2+\sqrt{2+\sqrt{2.......}}}\) (có vô hạn dấu căn) là ..............
A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)
A2 = 2 + A
=> A2 - A - 2 = 0
=> A2 - 2A + A - 2 = 0
=> A(A - 2) + (A - 2) = 0
=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1
Mà A > 0 nên A = 2
Giá trị của biểu thức (có vô hạn dấu căn) là....
giá trị của biểu thức \(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\)(có vô hạn dấu căn)
Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\) nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)
hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)
Vì A>0 nên A=2
tick nha
Giá trị biểu thức \(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) (có vô hạn dấu căn)
bạn biết nào chỉ cho mình cách giải với
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0
\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)
\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)
Vậy A = 2
Giá trị của biểu thức: \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+.....}}}}}\) là bao nhiêu (biết rằng có vô hạn dẫu căn)
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)
Nhận xét : A > 0
Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)
\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)
Vì A > 0 nên ta chọn A = 2
Vậy giá trị của biểu thức là : A = 2
Đặt A= biểu thức đó
=>A^2= 2+ A
=>A^2-A-2=0
Giải PT tìm ra A
p/s: lấy A>0 thôi
=1+1+1+.....................(vô vàn số 1)
Tính giá trị của biểu thức: \(B=\sqrt{6+\sqrt{6+\sqrt{6+........+\sqrt{6}}}}\) (vô số dấu căn)
1) Với giá trị nào của x ta có \(x\sqrt{3}=-\sqrt{3x^2}\)
2) Đưa thừa số vào trong dấu căn của biểu thức \(ab^2\sqrt{a}\) với a > 0 ta được :
3) Khử mẫu của biểu thức \(a\sqrt{\dfrac{b}{a}}\) (với a>0) ta được :
\(1,ĐKXĐ:x\ge0\\ x\sqrt{3}=-\sqrt{3x^2}\\ \Leftrightarrow3x^2=9x^2\\ \Leftrightarrow6x^2=0\\ \Leftrightarrow x=0\left(tm\right)\)
\(2,ab^2\sqrt{a}=ab^2\sqrt{a}\)
\(3,a\sqrt{\dfrac{b}{a}}=\sqrt{ab}\)
a. Tìm giá trị của $x$ sao cho biểu thức $A = x - 1$ có giá trị dương.
b. Đưa thừa số ra ngoài dấu căn, tính giá trị biểu thức $B = 2\sqrt{2^2.5} - 3\sqrt{3^2.5} + 4\sqrt{4^2.5}$.
c. Rút gọn biểu thức $C = \left(\dfrac{1-a\sqrt a}{1-\sqrt a} + \sqrt a\right) \left(\dfrac{1-\sqrt a}{1-a}\right)^2 $ với $a \ge 0$ và $a \ne 1$.
a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)
b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)
\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)
( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))
c, Với \(a\ge0;a\ne1\)
\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)