Tính:A: 1+1/3+1/6+1/10+...+1/171+1/190.
B: S=1/2+1/2^2+1/2^3+...+1/2^20.
C: 1+2+2^2+2^3+...+2^2006+2^2007.
Tính:A: 1+1/3+1/6+1/10+...+1/171+1/190.
B: S=1/2+1/2^2+1/2^3+...+1/2^20.
C: 1+2+2^2+2^3+...+2^2006+2^2007.
\(A=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{380}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{19.20}\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=1+2\times\frac{9}{20}\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}\)
b)\(2S=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)
\(2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{1}{2^{20}}\)
c)đặt A=1+2+2^2+2^3+...+2^2006+2^2007.
2A=2(1+2+2^2+2^3+...+2^2006+2^2007)
2A=2+2^2+2^3+...+2^2008
2A-A=(2+2^2+2^3+...+2^2008)-(1+2+2^2+2^3+...+2^2006+2^2007)
A=2^2008-1
1.Chứng tỏ :
a ) A=(1- 1/3 ) . ( 1-2/5) ..... (1 -9/5) = 0
b ) B = 1/1 mũ 2 + 1/3mũ 2+1/4 mũ 2 + 1/ 5 mũ 2 + 1/ 6 mũ 2 + 1 / 7 mũ 2 + 1/ 8 mũ 2 < 1
2. So sánh
a) A= 2006/2007 và B = 2006 + 2007 / 2007 + 2008
b ) C = 196/197 + 197/198 và D = 196+197/197+198
c) E = 20 mũ 10 +1 tất cả phần 20 mũ 10 -1 và F = 20 mũ 10 - 1 tất cả phần 20 mũ 10 - 3
Giúp mình với mình đang cần gấp
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
so sánh :
a.3^300 +4^300 và 3.24^100
b.(20^2006 + 11^2006)^2007 và (20^2007 +11^2007)^2006
c.(1/2^2-1).(1/3^2-1).(1/4^2-1)..........(1/1000^2-1) và -1/2
1 Tính
A (1-1/2) * (1-1/3 ) * (1-1/4 ) * .....*(1-1/19)* ( 1-1/20)
B 3/2 * 4/3 * 6/5* ......* 2006/2005 * 2007/2006 * 2008/2007
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot......\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot......\cdot\frac{19}{20}\)
\(A=\frac{1.2.3.....19}{2.3........20}\)
\(A=\frac{1}{20}\)
1.\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
2. \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
3. Hãy so sánh A và B
\(A=\frac{10^{2006}+1}{10^{2007}+1}\) \(B=\frac{10^{2007}+1}{10^{2008}+2}\)
Bài1:So sánh
A=2006/987654321+2007/246813579
B=2007/987654321+2006/246813579
b)1965/1976 và 1973/1975
Bài2:Tìm x
a)3 - (5 và 3/8 + x - 7 và 5/24):6 và 2/3=2
b) (1/1*2+1/2*3+1/3*4+1/4*5+1/5*6)*10 - x=0
Bài3:Tính nhanh
A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12
Tính:
a) -5/7(14/5 - 7/10) : |-2/3| - 3/4(8/9 + 16/3) + 10/3(1/3 + 1/5)
b) 17/-26(1/6 - 5/3) : 17/13 - 20/3(2/5 - 1/4) + 2/3(6/5 - 9/2)
c) -8/9(9/8 - 3/2) + 5/4 : (5/2 - 15/4) - 3/4(10/9 - 8/3) : (-1/3)
d) 21/10 : (12/5 - 9/10) . (-4/7) - 3/2(1/6 - 7/12) + 1/5(3/2 - 1/4)
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
Giải phương trình (1/1*2*3+1/2*3*4+1/3*4*5+...+1/2005*2006*2007)x=1*2+2*3+...+2006*2007
Bài 1: Cho A= 1+21+22+23+.....+22007.
a. tính 2A
b. Chứng minh : A = 22006-1
Bài 10 : Cho B =1+3+32+.....+32006.
a. Tính 3B
b. Chứng minh : B = ( 32007-1) :2
Bài 11:
Cho C= 1+4+42+43+45+46. Chứng minh : C = ( 47-1):3
Bài 12 : Tính tổng : S= 1+2+22+23+....+22017
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018