|2X-1|=(-4)^2
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
1. 2x*(3x^2+4)-6x*(x-7)
2. (x+1)*(2x-2)-(2x-1)^2
3. (2x-3)^2-2*(2x-3)*(2x+5)+(2x+5)^2
4. (x-2)^4+(x+2)^4
5. (x+1)^5-(x-1)^5
tách 2,3 câu ra làm 1 câu hỏi đi. bạn đăng cả đóng thế này k ai tl cho đâu. khi nào tách thì gửi link mình tl cho
cmr:1-2/x-(2x+x^2/4+2x+x^2 + 2x-x^2/4-2x+x^2):(16-8x/4-2x+x^2 -16+8x/4+2x+x^2)=(x-1/x)^2
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
Giải phương trình
a) \(\sqrt{x^2-2x+4}=2x-2\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\)
c) \(\sqrt{2x^2-2x+1}=2x-1\)
d) \(\sqrt{x+4\sqrt{x-4}}=2\)
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-2\geq 0\\ x^2-2x+4=(2x-2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x^2-6x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x(x-2)=0\end{matrix}\right.\Leftrightarrow x=2\)
b. ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}=2$
$\Leftrightarrow |\sqrt{x-1}+1|=2$
$\Leftrightarrow \sqrt{x-1}+1=2$
$\Leftrightarrow \sqrt{x-1}=1$
$\Leftrightarrow x=2$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x+1=4x^2-4x+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=2x(x-1)=0\end{matrix}\right.\Leftrightarrow x=1\) (tm)
d.
ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
a: Ta có: \(\sqrt{x^2-2x+4}=2x-2\)
\(\Leftrightarrow x^2-2x+4=4x^2-8x+4\)
\(\Leftrightarrow-3x^2+6x=0\)
\(\Leftrightarrow-3x\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b: Ta có: \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow x-1=1\)
hay x=2
c: Ta có: \(\sqrt{2x^2-2x+1}=2x-1\)
\(\Leftrightarrow2x^2-2x+1=4x^2-4x+1\)
\(\Leftrightarrow-2x^2+2x=0\)
\(\Leftrightarrow-2x\left(x-1\right)=0\)
hay x=1
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`