Bài tập 7: Cho a, b, c là các số nguyên khác 0, a \(\ne\) c thỏa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\) . Chứng minh rằng \(a^2+b^2+c^2\) không thể là số nguyên tố.
cho a,b,c là các số nguyên khác 0,\(a\ne c\)thỏa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\). chứng minh rằng \(a^2+b^2+c^2\)không thể là số nguyên tố
Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)
\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)
Vì \(a\ne c\)nên \(c-a\ne0\)
Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)
Giả sử \(a^2+b^2+c^2\)là số nguyên tố
Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)
\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)
\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)
Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1
Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)
nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)
Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)
Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)
Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)
Từ (1), (2) suy ra \(0< ac< 1\)
Mà a,c là số nguyên nên ac là số nguyên
Do đó không có giá trị a,c thỏa mãn
suy ra điều giả sử sai
Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố
Ể vậy là tự hỏi tự trả lời luôn kì vậy ai chơi
Cho a,b,c là các số nguyên khác 0, \(a\ne c\)sao cho \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\).Chứng minh rằng \(a^2+b^2+c^2\)không phải là số nguyên tố
Cho \(a,b,c\) là các số tự nhiên khác \(0\), \(a\ne c\) sao cho \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\). Chứng minh rằng \(a^2+b^2+c^2\) không phải là số nguyên tố.
Không cần giải hết ạ T^T Giải đc 1 bài là em cảm kích lắm rùi
Bài 1: Cho a,b,c là 3 số dương. Chứng minh rằng:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{a+b+c}{2}\)
Bài 2:
a) Cho x>0, y>0 thỏa mãn \(x^2+y^2=4\). Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{xy}{x+y+2}\)
b) Cho p là số nguyên tố (p>2). Chứng minh rằng số 2/p chỉ có thể biểu diễn dưới dạng duy nhất \(\frac{2}{p}=\frac{1}{x}+\frac{1}{y}\)
(Trong đó x, y là các số nguyên dương phân biệt)
B1 :
Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a
Tương tự b^2/c+a + c+a/4 >= b
c^2/a+b + a+b/4 >= c
=> VT + a+b+c/2 >= a+b+c
=> VT >= a+b+c/2 = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
k mk nha
cho a,b,c là các số nguyên khác 0 thỏa mãn \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}...\).Chứng minh rằng a^3 + b^3 + c^3 chia hết cho 3
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)
Mà \(a,b,c\)là số nguyên khác 0 \(\Rightarrow\)\(abc\ne0\)\(\Rightarrow\)\(a+b+c=0\)\(\Rightarrow a+b=-c\)
Ta lại có: \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b\right)\)
\(=0-0-3ab\left(-c\right)\)
\(=3abc⋮3\)
Vậy \(a^3+b^3+c^3=3abc⋮3\)\(\Leftrightarrow\)\(a+b+c=0\)
Cho a,b,c là các số khác 0 và b khác c thoa mãn \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)
Chứng minh răng \(a^2+b^2+c^2\)không là sô nguyên tố
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Các bn giúp mk bài này nha
1, Chứng minh rằng với mọi số nguyên tố p>2 thì không tồn tại các số nguyên dương m,n thỏa mãn :\(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
2, Cho 3 số thực khác 0 đôi một khác nhau và thỏa mãn : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)=2014
tính giá trị biểu thức H=\(c^2\left(a+b\right)\)
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
Cho 3 số a,b,c khác 0 thỏa mãn a+b+c=0.Chứng minh:\(P=\sqrt{\frac{54a^2}{a^2-b^2-c^2}+\frac{54b^2}{b^2-c^2-a^2}+\frac{54c^2}{c^2-a^2-b^2}}\)là một số nguyên
.
Ta có : \(P=3\sqrt{6}\sqrt{\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}}\) = \(3\sqrt{6}.Q\)
Thấy : \(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2=2bc\) ( do a + b + c = 0 )
Suy ra : \(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\) . CMTT : \(\frac{b^2}{b^2-c^2-a^2}=\frac{b^2}{2ac};\frac{c^2}{c^2-a^2-b^2}=\frac{c^2}{2ab}\)
Suy ra : \(Q=\sqrt{\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}}=\sqrt{\frac{a^3+b^3+c^3}{2abc}}=\sqrt{\frac{3abc}{2abc}}=\sqrt{\frac{3}{2}}\) ( vì a + b + c = 0 )
Khi đó : \(P=3\sqrt{6}.\sqrt{\frac{3}{2}}=9\) là 1 số nguyên
( Q.E.D)