Giải bất phương trình:
\(C_{n+2}^{n-1}\) + \(C_{n+2}^n\) > \(\frac{5}{2}\)\(A_n^2\)
s=2^(n)*c_(n)^(0)+2^(n-2)*c_(n)^(n-2)+2^(n-4)*c_(n)^(n-4)+...+c_(n)^(n)
giúp em với ạ
Đề thế này thì không thể hiểu được.
Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:
Mũ thì bấm "^" là được
Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:
Sau đó chọn
Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir
S= 2nC0n + 2n-2 Cn-2n +2n-4 Cnn-4 +...+Cnn
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
Tìm n biết n thỏa mãn: \(C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n=2^{20}-1\)
Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)
\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)
\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)
Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)
\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-1\)
\(\Leftrightarrow2n=20\)
\(\Leftrightarrow n=10\)
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm
Chứng minh rằng
\(C_n^m=C_{n-1}^{m-1}+C_{n-2}^{m-2}+...+C_{m-1}^{m-1}\)
Tìm số nguyên dương n sao cho \(C_{2n+1}^1-2.2.C_{2n+1}^2+3.2^2.C_{2n+1}^3-...+\left(2n+1\right).2^{2n}.C_{2n+1}^{2n+1}=2019\)
Xét khai triển:
\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)
Đạo hàm 2 vế:
\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)
\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)
Cho \(x=-1\) ta được:
\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)
\(\Rightarrow2n+1=2019\Rightarrow n=1009\)
Trong toán học, định lý khai triển nhị thức (ngắn gọn là định lý nhị thức) là một định lý toán học về việc khai triển hàm mũcủa tổng. Cụ thể, kết quả của định lý này là việc khai triển một nhị thức bậc {\displaystyle n} thành một đa thức có {\displaystyle n+1}
số hạng:
{\displaystyle (x+a)^{n}=\sum _{k=0}^{n}{n \choose k}x^{(n-k)}a^{k}}
với:
{\displaystyle {n \choose k}={\frac {n!}{(n-k)!k!}}}
Gọi là số tổ hợp chập k của n phần tử.
Định lý này đã được độc lập chứng minh bởi hai người đó là:
Nhà toán học và cơ học Sir Isaac Newton tìm ra trong năm 1665.Nhà toán học James Gregory tìm ra trong năm 1670.Công thức đã giới thiệu còn mang tên là Nhị thức Newton.
Mục lục
1Chứng minh định lý2Ví dụ3Tổng quát4Xem thêm5Tham khảoChứng minh định lý[sửa | sửa mã nguồn]
Định lý này được chứng minh bằng quy nạp.
Ta có biểu thức {\displaystyle P(n):(1+x)^{n}=\sum _{k=0}^{n}C_{n}^{k}x^{k}} (1) với mọi số tự nhiên n.
Đầu tiên tại P(1) đúng.
giả sử P(n) đúng, ta phải chứng minh {\displaystyle P(n+1):(1+x)^{n+1}=(1+x).\sum _{k=0}^{n}C_{n}^{k}x^{k}=(1+x)} và {\displaystyle \sum _{k=0}^{n}C_{n}^{k}x^{k+1}=\sum _{k=1}^{n}C_{n}^{k-1}x^{k}+x^{n+1}}
áp dụng hằng đẳng thức Pascal ta có:
{\displaystyle (1+x)^{n+1}=1+\sum _{k=1}^{n}(C_{n}^{k}+C_{n}^{k-1}).x^{k}+x^{n+1}=C_{n+1}^{0}.x^{0}+\sum _{k=1}^{n}C_{n+1}^{k}.x^{k}+C_{n+1}^{n+1}.x^{n+1}=\sum _{k=0}^{n+1}C_{n+1}^{k}x^{k}}
Do đó công thức (1) đúng.
giờ đặt {\displaystyle x={\frac {b}{a}}=>(1+{\frac {b}{a}})^{n}=\sum _{k=0}^{n}C_{n}^{k}{\frac {b^{k}}{a^{k}}}} và do đó {\displaystyle (a+b)^{n}=a^{n}(1+{\frac {b}{a}})^{n}=a^{n}\sum _{k=0}^{n}C_{n}^{k}{\frac {b^{k}}{a^{k}}}=\sum _{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}}
Ta có điều phải chứng minh.
Ví dụ[sửa | sửa mã nguồn]
Tam giác Pascal
Các trường hợp đặc biệt của định lý này nằm trong các Hằng đẳng thức đáng nhớ
Ví dụ: điển hình nhất là nhị thức là công thức bình phương của {\displaystyle x+y}:
{\displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}.\!}
Hệ số nhị thức xuất hiện ở phép triển khai này tương ứng với hàng thứ ba của tam giác Pascal. Các hệ số có lũy thừa cao hơn của {\displaystyle x+y}tương ứng với các hàng sau của tam giác:
{\displaystyle {\begin{aligned}(x+y)^{3}&=x^{3}+3x^{2}y+3xy^{2}+y^{3},\\[8pt](x+y)^{4}&=x^{4}+4x^{3}y+6x^{2}y^{2}+4xy^{3}+y^{4},\\[8pt](x+y)^{5}&=x^{5}+5x^{4}y+10x^{3}y^{2}+10x^{2}y^{3}+5xy^{4}+y^{5},\\[8pt](x+y)^{6}&=x^{6}+6x^{5}y+15x^{4}y^{2}+20x^{3}y^{3}+15x^{2}y^{4}+6xy^{5}+y^{6},\\[8pt](x+y)^{7}&=x^{7}+7x^{6}y+21x^{5}y^{2}+35x^{4}y^{3}+35x^{3}y^{4}+21x^{2}y^{5}+7xy^{6}+y^{7}.\end{aligned}}}
Chú ý rằng:
Lũy thừa của {\displaystyle x}Định lý nhị thức có thể áp dụng với lũy thừa của bất cứ nhị thức nào. Ví dụ:
{\displaystyle {\begin{aligned}(x+2)^{3}&=x^{3}+3x^{2}(2)+3x(2)^{2}+2^{3}\\&=x^{3}+6x^{2}+12x+8.\end{aligned}}}
Với một nhị thức có phép trừ, định lý có thể được áp dụng khi sử dụng phép nghịch đảo số hạng thứ hai.
{\displaystyle (x-y)^{3}=x^{3}-3x^{2}y+3xy^{2}-y^{3}.\!}
Tổng quát[sửa | sửa mã nguồn]
Trong trường hợp tổng quát trên trường số phức,
Nếu {\displaystyle r} là một số thực và {\displaystyle z}
là một số phức có module nhỏ hơn 1 thì:
{\displaystyle (1+z)^{r}=\sum _{k=0}^{\infty }{r \choose k}z^{k}}
Trong đó:
{\displaystyle {n \choose k}={\frac {n!}{k!(n-k)!}}={\frac {n(n-1)(n-2)...(n-k+1)}{k!}}}
hỉu giải thích giùm : https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_nh%E1%BB%8B_th%E1%BB%A9c
Giải phương trình
\(C_n^4\)+\(C_n^5\)= 3\(C_{n+1}^6\)
Điều kiện là n\(\ge\)5, n\(\in\)Z
Ta có
\(\Leftrightarrow\) \(C_{n+1}^5\) = 3\(C_{n+1}^6\) (áp dụng công thức \(C_{n+1}^k\) = \(C_n^k\) + \(C_n^{k-1}\))
\(\Leftrightarrow\) \(\frac{\left(n+1\right)!}{\left(n-4\right)!5!}\) = 3\(\frac{\left(n+1\right)!}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{\left(n-4\right)!5!}\) = \(\frac{3}{\left(n-5\right)!6!}\)
\(\Leftrightarrow\) \(\frac{1}{n-4}\) = \(\frac{3}{6}\)
\(\Leftrightarrow\) 3n - 12 = 6
\(\Leftrightarrow\) n = 6
Rõ ràng n = 6 thỏa mãn điều kiện n\(\ge\) 5, n \(\in\) Z. Vậy nghiệm duy nhất của chương trình đã cho là n = 6.
Tìm hệ số của x10 trong khai triển (2+3x)n biết n thõa : \(C_{2n+1}^1+C_{2n+1}^2+..........+C^{2n}_{2n+1}=2^{10}-1\)
Xét khai triển
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+...+C_{2n+1}^{2n}x^{2n}+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C^0_{2n+1}+C_{2n+1}^1+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}\)
\(\Leftrightarrow2^{2n+1}=2+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{2n+1}-2=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n}\)
\(\Leftrightarrow2^{10}-1=2^{2n+1}-2\Rightarrow2^{2n+1}=2^{10}+1\)
Không tồn tại n thỏa mãn yêu cầu bài toán (bạn xem lại đề bài)