tìm S=2/1.2.3+2/2.3.4+................+2/2009.2010.2011
và so sánh S với P biết P=1/2
so sánh S=2/1.2.3+2/2.3.4+2/3.4.5+...+2/2009.2010.2011 và P=1/2
So sanh s=2/1.2.3+2/2.3.4+2/3.4.5+...+2/2009.2010.2011 va p=1/2
Ta có :
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...............+\dfrac{2}{2009.2010.2011}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.........+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(S=\dfrac{1}{2}-\dfrac{1}{4042110}\) \(< \dfrac{1}{2}\)
\(\Rightarrow S< Q\)
So sánh:
S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2009.2010.2011}\)và P=\(\frac{1}{2}\)
s=1/1*2-1/2*3+1/2*3-1/3*4+....+1/2009*2010-1/210*2011
=1/1*2-1/2010*2011
<1/1*2
\(S=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2009\cdot2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{1\cdot2}-\frac{1}{2010\cdot2011}\)
\(S=\frac{1}{2}-\frac{1}{2010\cdot2011}< \frac{1}{2}\)
=> S < P
So sánh S và P:
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)
\(P=\dfrac{1}{2}\)
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)
\(\Rightarrow\) \(S< P\)
Vậy \(S< P\)
SO SÁNH
S= 2/1.2.3 + 2/2.3.+ 2/3.4.5 + ...+ 2/2009.2010.2011 VÀ P= 1/2
GIÚP MIK NHA
S=2/1.2.3+2/2.3.4+2/3.4.5+...+2/2013.2014.2015 so sánh với 1/2 (tất cả là phân số)
Tổng quát: \(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right).a}-\frac{1}{a\left(a+1\right)}\)
Ta có: \(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+.....+\frac{2}{2013.2014.2015}\)
\(S=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+.....+\left(\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)
\(S=\frac{1}{1.2}-\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{2014.2015}<\frac{1}{2}\)
Vậy....................
S=(2/1.2-2/2.3)+(2/2.3-2/3.4)+(2/3.4-2/4.5)+...........+(2/2013.2014-2/2014-2/2015)
S=(2/1.2-2/2014.2015):2
S=1-2/2014.2/2015
--> S>1/2
Tính nhanh:
a) A = 2\(^{2010}\) - 2\(^{2009}\) - 2\(^{2008}\) - 2\(^{2007}\) - ... - 2 - 1
b) B = 20 . 8 - 33 . 64 + 17 . 8 + 9 . 16 . 8 - 11 . 128
c) C = ( \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + ... + \(\dfrac{1}{2009.2010.2011}\) ) . \(\dfrac{2010.2011}{1010.527}\)
a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)
\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)
⇒ \(A=2^{2010}-1\)
⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)
⇒ \(A=1\)
b) \(B=2072\)
c) \(\dfrac{4949}{19800}\)
Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !
S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+..........+\frac{2}{2009.2010.2011}\)
Tính S
nếu cậu biết tách ra thành cách hiệu thì sẽ làm được nhanh thôi