Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miko hậu đậu
Xem chi tiết
Nguyễn Minh Tuấn
20 tháng 8 2017 lúc 15:48

mình ko biết, bạn k nha

Nàng công chúa lạnh lùng
20 tháng 8 2017 lúc 15:51

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

miko hậu đậu
20 tháng 8 2017 lúc 15:57

Nàng công chúa lạnh lùng bạn biết ko 

emily
Xem chi tiết
Trịnh Hữu An
9 tháng 7 2017 lúc 21:42

1, 

( x+y+z) lớn hơn bằng 3. căn bậc 3 của xyz

( x+y+z) ^ 3 lớn hơn bằng 27. xyz

x + y + z = 1 nên 27.xyz nhỏ hơn bằng 1

xyz nhỏ hơn bằng 1/27

dấu bằng xảy ra khi x = y = z = 1/3...

câu b tương tự .... mấy lâu bận nên ko giải được ... xin lỗi nhé

Nguyễn Tiến Đạt
Xem chi tiết
Phan Việt Quốc
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 20:47

Cả 2 biểu thức này đều ko tồn tại GTNN

GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)

Nguyễn Việt Lâm
26 tháng 12 2022 lúc 21:12

Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)

Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)

\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)

\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)

Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)

\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)

\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)

Nguyễn Thảo Ly
Xem chi tiết
Vũ Tri Hải
15 tháng 6 2017 lúc 22:16

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

Djfjch
Xem chi tiết
Nguyễn Khang
26 tháng 8 2019 lúc 18:43

Đề sai, cho đk x mà ko có đk y sao áp dụng cauchy bây giờ:v

Dương Thị Xuân Tình
Xem chi tiết
Diệp Nhi
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 3 2020 lúc 15:28

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

Khách vãng lai đã xóa
Trần Đức Thắng
Xem chi tiết
Trần Đức Thắng
13 tháng 9 2015 lúc 12:33

Tròi vậy cũng hỏi