huuuuuuuuuuuuu, thi toán có mỗi 280 điểm TT
Trong một kỳ thi toán học có 6 thí sinh được vào chung khảo. Thể lệ của cuộc thi như sau: Mỗi thí sinh phải giải 5 bài toán. Mỗi bài toán đúng được tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm. Hãy chứng tỏ rằng trong 6 thí sinh đó có ít nhất 2 thí sinh bằng điểm nhau. Biết rằng điểm thấp nhất là điểm 0.
Giải:
Vì mỗi thí sinh phải giải 5 bài toán. Mỗi bài toán đúng được tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm nên ta có 5 trường hợp sau:
Nếu đúng 5 bài thì số điểm được là: 5. 4 = 20 (điểm).
Nếu đúng 4 bài thì số điểm được là: 4. 4 - 2 = 14 (điểm).
Nếu đúng 3 bài thì số điểm được là: 3. 4 – 4 = 8 (điểm).
Nếu đúng 2 bài thì số điểm được là: 2. 4 – 6 = 2 (điểm).
Nếu đúng 1 bài hoặc không đúng bài nào thì đều được 0 điểm.
Như vậy có 6 thí sinh dự thi nhưng chỉ có 5 loại điểm nên theo nguyên lý Điricle sẽ có ít nhất 2 thí sinh bằng điểm nhau.
Tớ làm giống cậu
Đúng 100%
Đúng 100%
Đúng 100%
Trong một kì thi toán học có 6 thí sinh được vào chung khảo . Thể lệ của cuộc thi như sau:mỗi thí sinh phải giải 5 bài toán . Mỗi bài toán đúng tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm . Hãy chứng tỏ rằng trong 6 thí sinh đó có ít nhất hai thí sinh bằng điểm nhau . Biết rằng điểm thấp nhất là điểm 0
Trong một kỳ thi toán học có 6 thí sinh được vào chung khảo. Thể lệ của cuộc thi như sau: Mỗi thí sinh phải giải 5 bài toán. Mỗi bài toán đúng được tính 4 điểm. Mỗi bài toán sai hoặc không làm được đều bị trừ 2 điểm. Hãy chứng tỏ rằng trong 6 thí sinh đó có ít nhất 2 thí sinh bằng điểm nhau. Biết rằng điểm thấp nhất là điểm 0.
viet ca cach lam nhe
có 6 bạn thi giải toán. mỗi bạn thi 6 bài. mỗi bài đúng được 2 điểm ,mỗi bài sai bị trừ 1 điểm. nếu số điểm trừ hơn số điểm đúng thì bài sẽ được 0 điểm . hỏi có thể chắc chắn có 2 bạn có điểm = nhau không
chắc chắn sẽ có 2 bạn bằng điểm nhau
Nếu làm đúng hết thì có 12 điểm
- Nếu làm sau 1 câu có 9 điểm
- Nếu làm sai 2 câu có 6 điểm
- Nếu làm sai 3 câu có 3 điểm
- Nếu làm sai 4 câu hoặc không trả lời được có 0 điểm
Ta có:
Lần lượt các số điểm 9, 6, 3, 0
Mà có 6 học sinh thi giải toán
Vậy chắc chắn có có hai bạn có điểm bằng nhau
Trong một cuộc thi giải toán có 32 bạn thi giải. Mỗi bạn phải giải 5 bài. Cách cho điểm như sau: mỗi bài đúng 2 đúng, mỗi bài sai và không làm sẽ bị trừ 1 điểm. Điểm thấp nhất của mỗi bạn là 0 điểm. Chứng minh ít nhất có 7 bạn có số điểm bằng nhau
có 6 học sinh tham gia đố vui toán học . mỗi học sinh phải giải 5 bài toán , mỗi bài đúng được cộng 4 điểm , bài sai bị trừ 2 điểm . kết thúc cuộc thi có 90 điểm . hồi cố ? bài đúng ? bài sai
Trong kì thi thử THPT Quốc Gia, An làm đề thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,5 điểm
A. 9 22 .
B. 13 1024 .
C. 2 19 .
D. 53 512
Đáp án B
Để An đúng được không dưới 9,5 điểm thì bạn ấy phải chọn đúng nhiều hơn 2 trong 5 câu còn lại. Xác suất mỗi câu chọn đúng là 1 4 và không chọn đúng là 3 4 .
Để An đúng được không dưới 9,5 điểm thì bạn ấy phải chọn đúng hoặc 3 hoặc 4 hoặc 5 trong 5 câu còn lại.
Do đó xác suất cần tìm là
Trong kì thi thử THPT Quốc Gia, An làm để thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,5 điểm.
A. 13 1024
B. 2 19
C. 53 112
D. 9 22
Đáp án A.
Phương pháp: Tính xác suất để học sinh đúng thêm 3 câu nữa trở lên.
Xác suất mỗi câu trả lời đúng là 0,25 và mỗi câu trả lời sai là 0,75.
Cách giải:
An trả lời chắc chắn đúng 45 câu nên có chắc chắn 9 điểm.
Để điểm thi ≥ 9,5 => An phải trả lời đúng từ 3 câu trở lên nữa.
Xác suất để trả lời đúng 1 câu hỏi là 0,25 và trả lời sai là 0,75
TH1: Đúng 3 câu. P1 = 0,253.0,752
TH2: Đúng 49 câu P2 = 0,254.0,75
TH3: Đúng cả 50 câu P3 = 0,254
Vậy xác suất để An được trên 9,5 điểm là P = P1 + P2 + P3 = 13/1024.
Trong kì thi thử THPT Quốc Gia, An làm để thi trắc nghiệm môn Toán. Đề thi gồm 50 câu hỏi, mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án đúng; trả lời đúng mỗi câu được 0,2 điểm. An trả lời hết các câu hỏi và chắc chắn đúng 45 câu, 5 câu còn lại An chọn ngẫu nhiên. Tính xác suất để điểm thi môn Toán của An không dưới 9,5 điểm
A. 13 1024
B. 2 19
C. 53 512
D. 9 22
Đáp án A.
Phương pháp: Tính xác suất để học sinh đúng thêm 3 câu nữa trở lên.
Xác suất mỗi câu trả lời đúng là 0,25 và mỗi câu trả lời sai là 0,75.
Cách giải:
An trả lời chắc chắn đúng 45 câu nên có chắc chắn 9 điểm.
Để điểm thi ≥ 9,5 => An phải trả lời đúng từ 3 câu trở lên nữa.
Xác suất để trả lời đúng 1 câu hỏi là 0,25 và trả lời sai là 0,75
TH1: Đúng 3 câu P 1 = 0 , 25 3 . 0 , 75 2
TH2: Đúng 49 câu P 2 = 0 , 25 4 . 0 , 75
TH3: Đúng cả 50 câu P 3 = 0 , 25 4
Vậy xác suất để An được trên 9,5 điểm là P = P 1 + P 2 + P 3 = 13 1024