Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tuấn Nguyên
Xem chi tiết
Nguyễn Minh Đức
8 tháng 9 2019 lúc 21:03

toi ko bit lam chi biet lam anh thui

Lê Tuấn Nguyên
8 tháng 9 2019 lúc 21:03

Mk cũng khá tốt về Anh nha bạn

Nguyễn Minh Đức
8 tháng 9 2019 lúc 21:09

ban biet lam cau hoi minh vua gui ko

Vũ Thu Thảo
Xem chi tiết
Lê Thị Mỹ Hằng
Xem chi tiết
Thiên Phong Nguyễn Hà
Xem chi tiết
Bá đạo sever là tao
24 tháng 9 2016 lúc 16:55

bạn thử cosi xem

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 16:40

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2\left(y+z\right)}{4\left(y+z\right)}}=\dfrac{2x}{2}=x\)

Cmtt \(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y;\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{2\left(x+y+z\right)}{4}\ge x+y+z\\ \Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge x+y+z-\dfrac{x+y+z}{2}=\dfrac{x+y+z}{2}\)

Dấu \("="\Leftrightarrow x=y=z\)

 

trần hồng phúc
Xem chi tiết
hanhungquan
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
Hà Nhung Huyền Trang
7 tháng 7 2023 lúc 8:59

Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)

Phân tích vế phải ta được6(x2 + y2 + z2 − (xy + yz + zx)

VT = VP nên VP - VT=0

 4(x2 + y2 + z2 − (xy + yz + zx)) = 0

2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0

→2((x − y)2 + (y − z)2 + (z − x)2) = 0

→(x − y)2 + (y − z)2 + (z − x)2 = 0

→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0

→x = y = z

Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:22

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:33

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)

Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:34

Mik đã viết ra cả 2 cách nên bạn thấy cách nào dễ hiểu  thì làm cách đó