S=1.2.3+2.3.4+..........+8.9.10 TÌM 4S
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + 7.8.9 + 8.9.10
Chứng minh rằng 4S + 1 là số chính phương .
\(S=1.2.3+2.3.4+3.4.5+.....+8.9.10\)
\(\Rightarrow4S=1.2.3.4+2.3.4.\left(5-1\right)+.........+8.9.10.\left(11-7\right)\)
\(\Rightarrow4S=8.9.10.11=7920\Rightarrow4S+1=7921=89^2\left(ĐPCM\right)\)
Ta có:
4S = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) + 3 . 4 . 5 . (6 - 2) + ... + 7 . 8 . 9 . (10 - 6) + 8 . 9 . 10 . (11 - 7)
4S = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 1 . 2 . 3 . 4 + 3 . 4 . 5 . 6 - 2 . 3 . 4 . 5 + ... + 7 . 8 . 9 . 10 - 6 . 7 . 8 . 9 + 8 . 9 . 10 . 11 - 7 . 8 . 9 . 10
4S = 8 . 9 . 10 . 11 = 7920
4S + 1 = 7921 = 892
Vậy 4S + 1 là scp
tìm x biết:(1/1.2.3+2/2.3.4+...+1/8.9.10).x=22/45
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(A=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{10-8}{8.9.10}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{11}{45}\).
Phương trình tương đương với:
\(\frac{11}{45}x=\frac{22}{45}\Leftrightarrow x=2\).
Tìm x:
(1/1.2.3+1/2.3.4+...+1/8.9.10).x=22/45
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\cdot x=\frac{22}{45}\)
\(\Rightarrow1-\frac{1}{10}.x=\frac{22}{45}\)
\(\Rightarrow\frac{9}{10}.x=\frac{22}{45}\)
\(\Rightarrow x=\frac{22}{45}:\frac{9}{10}\)
\(\Rightarrow x=\frac{22}{45}.\frac{10}{9}=\frac{22.10}{45.9}=\frac{44}{81}\)
=>x=\(\frac{44}{81}\)
S=1.2.3+2.3.4+3.4.5+....+49.50.51.tìm n để 4S+n là số chính phương .vậy n = ?
Cho s = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 49.50.51.Tìm n nhỏ nhất để 4S + n là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
= 6497400
Mà V649740 = 2548.999804
=> 4S + n = 2549^2
=> 6497400 + n = 6497401
=> n = 6497401 - 6497400
=> n = 1
Vạy: n = 1 (thấy đúng thì !)
tìm so tu nhien x biet (1/1.2.3 + 1/2.3.4+...+ 1/8.9.10).x=23/45
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{44}{90}.x=\frac{23}{45}\Rightarrow\frac{11}{45}.x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
D= 1.2.3+2.3.4+....+8.9.10
\(D=1.2.3+2.3.4+...+8.9.10\)
\(4D=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)
\(4D=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)
\(4D=8.9.10.11\)
\(D=\frac{8.9.10.11}{4}=\frac{7920}{4}=1980\)
1.2.3+2.3.4+3.4.5+...+8.9.10
Đặt A=1.2.3+2.3.4+...+8.9.10
\(4A=1.2.3.4+2.3.4.4+...+8.9.10.4\)
\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)
\(4A=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)
\(4A=\left(1.2.3.4+2.3.4.5+...+8.9.10.11\right)-\left(0.1.2.3+1.2.3.4+...+7.8.9.10\right)\)
\(4A=8.9.10.11-0.1.2.3\)
\(4A=8.9.10.11\)
\(A=2.9.10.11\)
\(\Rightarrow A=1980\)
B=1.3+3.5+5.7+...+97.98
C=1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+7.8.9+8.9.10
D=1.2.3+2.3.4+...+99.100.101