solo nek sherk!
Bài 1:Cho tam giác ABC có AB<AC. Đường phân giác AD. Chứng minh:
a/Góc ADB<ADC
b/DB<DC
BÀI TẬP
Bài 1. Cho tam giác ABC có AB=5cm; AC=7cm. So sánh <B và <C
Bài 2. Cho tam giác ABC có AB=3cm; AC= 4cm;BC = 5cm. So sánh các góc của
tam giác
Bài 3.Cho tam giác có <B=60 0 ; <C =40 0 . So sánh các cạnh của tam giác ABC
Bài 4. Cho tam giác ABC vuông ở A có AB= 6cm; BC = 10 cm
1/ Tính AC
2/ So sánh các góc của tam giác ABC
ai giúp mình giải bài toán này với được k ạ ( chi tiết hộ mình nhé)
-bài 1: cho tam giác ABC có AB=6cm; AC=8cm; BC=10cm.
a, chứng minh tam giác ABC vuông
b, tính độ cao AH
-bài 2: cho tam giác ABC có, AB=12cm; AC=16cm; BC=20cm
a, chứng minh tam giác ABC vuông
b tính độ cao AH
c, kẻ HD và HE lần lượt vuông góc AB , AC. Tính HD và HE.
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
-bài 4: cho tam giác ABC vuông tại A đường phân giác trong BD( DϵAC) cho AB=3cm; BC=5cm.
a, tính AC, AD,CD
b, tính BD
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)
ai giúp mình giải bài toán này với được k ạ ( chi tiết hộ mình nhé)
-bài 1: cho tam giác ABC có AB=6cm; AC=8cm; BC=10cm.
a, chứng minh tam giác ABC vuông
b, tính độ cao AH
-bài 2: cho tam giác ABC có, AB=12cm; AC=16cm; BC=20cm
a, chứng minh tam giác ABC vuông
b tính độ cao AH
c, kẻ HD và HE lần lượt vuông góc AB , AC. Tính HD và HE.
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
-bài 4: cho tam giác ABC vuông tại A đường phân giác trong BD( DϵAC) cho AB=3cm; BC=5cm.
a, tính AC, AD,CD
b, tính BD
ai giúp mình giải bài toán này với được k ạ ( chi tiết hộ mình nhé)
-bài 1: cho tam giác ABC có AB=6cm; AC=8cm; BC=10cm.
a, chứng minh tam giác ABC vuông
b, tính độ cao AH
-bài 2: cho tam giác ABC có, AB=12cm; AC=16cm; BC=20cm
a, chứng minh tam giác ABC vuông
b tính độ cao AH
c, kẻ HD và HE lần lượt vuông góc AB , AC. Tính HD và HE.
-Bài 3: cho tam giác ABC vuông tại A , đường cao AH, biết AH:AC=3:5 và AB=15cm
a, tính HB và HC
b, gọi E, F lần lượt là hình chiếu của H trên AB và AC ; chứng minh AB.AC=EF.BC
-bài 4: cho tam giác ABC vuông tại A đường phân giác trong BD( DϵAC) cho AB=3cm; BC=5cm.
a, tính AC, AD,CD
b, tính BD
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
áp dụng định lí Py ta go bạn nhé
Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a,tam giác ABC vuông tại A
b, vẽ tia pg BD( D thuộc AC), từ D kẻ DE vuông góc vs BC (E thuộc BC)
cmr: DA=DE
c, DE cắt AB tại F, cmr tam giác ADF= tam giác EDC
Ghi rõ lời giải nhak:^
Làm đúng mik tích cho nek ^^
a, Xét \(\Delta ABC\) có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lí Pytago đảo) (đpcm)
b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)
\(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
Xét \(\Delta ABD\) và \(BDE\) có:
\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)
BD cạnh chung
\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)
\(\Rightarrow AD=DE\) (2 cạnh tương ứng) (đpcm)
c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))
\(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)
Xét \(\Delta ADF\) và \(\Delta CDE\) có:
\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)
AD = DE (vì \(\Delta ADF=\Delta EDC\))
\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\) (đpcm)