Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Minh Vũ
Xem chi tiết
Phạm Nguyễn Liên Phương
26 tháng 3 2020 lúc 21:57

p là số nguyên tố lớn hơn 3 => p chia hết cho 3, p chia 3 dư 1, p chia 3 dư 2
bạn xét từng trường hợp của p rồi thay vào là được

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 3 2020 lúc 21:59

+) p là số nguyên tố lớn hơn 3 

=> p có dạng 3k + 1 hoặc 3k + 2

Với p = 3k + 1 ta có: ( p + 2009 ) ( p + 2011 ) = ( 3k + 2010) ( 3k + 2012 ) = 3( k + 670 ) ( 3k + 2012 ) \(⋮\)3

Với p = 3k + 2 ta có: ( p + 2009 ) ( p + 2011 ) = ( 3k + 2011) ( 3k + 2013) = 3( 3k + 2011 ) ( k + 671 ) \(⋮\)3

=>  ( p + 2009 ) ( p + 2011 )  \(⋮\)3 (1)

+) p là số nguyên tố lớn hơn 4 

=> p có dạng 4k + 1 hoặc 4k + 3

Với p = 4k + 1 ta có: ( p + 2009 ) ( p + 2011 ) = ( 4k + 2010) ( 4k + 2012 ) = 8( 2k + 1005 ) ( k + 503 ) \(⋮\)8

Với p = 4k + 3 ta có: ( p + 2009 ) ( p + 2011 ) = ( 4k + 2012) ( 4k + 2014) = 8( k + 503 ) ( 2k + 1007 ) \(⋮\)8

=> ( p + 2009 ) ( p + 2011 )  \(⋮\)8 (2)

Từ (1) ; (2) và ( 3; 8) = 1; 3.8 = 24

=> ( p + 2009 ) ( p + 2011 )  \(⋮\)24.

Khách vãng lai đã xóa
Nguyễn Thế Phúc Anh
Xem chi tiết
nguyễn đào bảo ngọc
Xem chi tiết
Chu Công Đức
9 tháng 12 2019 lúc 18:31

Vì p là số nguyên tố lớn hơn 3 \(\Rightarrow\)p là số lẻ 

Đặt \(p=2k+1\left(k\inℕ,k>1\right)\)

\(\Rightarrow\left(p+2019\right)\left(p+2011\right)=\left(2k+1+2019\right)\left(2k+1+2011\right)\)

     \(=\left(2k+2020\right)\left(2k+2012\right)=4\left(k+1010\right)\left(k+1006\right)⋮4\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 3 2020 lúc 22:00

Câu hỏi của Đoàn Minh Vũ - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
nguyễn hữu bình
Xem chi tiết
Nguyễn Linh Chi
26 tháng 3 2020 lúc 22:00

Câu hỏi của Đoàn Minh Vũ - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2017 lúc 6:56

Ta có p - 1 p p + 1   ⋮   3    mà (p, 3) = 1 nên

            p - 1 p + 1   ⋮   3                     (1)

 p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8

Vậy (p – 1)(p + 1) chia hết cho 24.

cô bé thì sao nào 992003
Xem chi tiết
soyeon_Tiểu bàng giải
29 tháng 6 2016 lúc 16:28

Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3

=> p2 chia 3 dư 1

=> p2 - 1 chia hết cho 3 (1)

Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ

=> p2 chia 8 dư 1

=> p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24

=> đpcm

Ủng hộ mk nha ^-^

Thắng Nguyễn
Xem chi tiết
Hoang Danh Duc
Xem chi tiết
Quang Master
11 tháng 1 2016 lúc 19:55

Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .

Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24 

Tick nha !

Nguyễn Mai Huy Phát
24 tháng 11 2016 lúc 22:17

Một số chia hết cho 24 là một số chia hết cho 4,6

Mà chia hết cho 6 là chia hết cho 2 và 3

Theo đề bài thì P>3

Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1) 

=>(P-1)(P+1) sẽ chia hết cho 3

P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)

Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn

Hiệu của (P+1) - (P-1) =2

Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4

=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24

hoang minh chau
26 tháng 3 2017 lúc 16:47

đỏ đó bạn

Minh Triều
Xem chi tiết
Trần Thị Loan
6 tháng 10 2015 lúc 20:34

n chia cho 7 dư 4 => n = 7k + 4 ( k là số tự nhiên)

n= (7k + 4)= 49k+ 56k + 16 = 7(7k+ 8k + 2) + 2 => n2 chia cho 7 dư 2

Ta Vu Dang Khoa
6 tháng 10 2015 lúc 20:31

16 nha Minh Triều

Tạ Quang Duy
6 tháng 10 2015 lúc 20:33

số n có dạng 7k+4

=>n2=(7k+4)(7k+4)

=>n2=(7k)2+7k.4+4.7k+16

Vì 7k)2+7k.4+4.7k chia hết cho n

=>dư của n2chia cho 7 tức là số dư của 16 chia cho 7

16:7=2 dư 2

=>........................