Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tăng Thị Cẩm Tú
Xem chi tiết
Ichigo
Xem chi tiết
Ichigo
Xem chi tiết
helloa4
Xem chi tiết
dam quang tuan anh
2 tháng 1 2017 lúc 11:08

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
mk đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:  
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)

nguyen thi lan huong
2 tháng 1 2017 lúc 11:08

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 
 

helloa4
2 tháng 1 2017 lúc 11:14

216 lấy đâu ra?

Lê Hoàng Quân
Xem chi tiết
Lê Hoàng Minh +™( ✎﹏TΣΔ...
18 tháng 8 2021 lúc 12:32

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Khách vãng lai đã xóa
Four Leaf Clover Karry
18 tháng 8 2021 lúc 12:32

Gọi a là số tự nhiên cần tìm.

a

chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Khách vãng lai đã xóa
THI MIEU NGUYEN
Xem chi tiết

Gọi a là số tự nhiên cần tìm.

a chia 17 dư 5

=> a = 17m + 5 a chia 19 dư 12

=> a = 19n + 12

Do đó: a + 216 = 17m + 221 chia hết cho 17.

a + 216 = 17n + 228 chia hết cho 19

=> a + 216 chia hết cho 17 và chia hết cho 19.

Mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. BCNN(17 , 19) = 17.19 = 323.

=> a + 216 = 323

=> a = 323 - 216

Vậy a = 107

Khách vãng lai đã xóa
Lê Duy Khang
Xem chi tiết
Nguyễn Thị Minh Hằng
9 tháng 9 2015 lúc 11:13

x:19(dư 12) x=19n+12(1) (n là số tự nhiên)
x=19n+12 = 17n+(2n+12) mà x:17 dư 5  2n+7 chia hết cho 17
 n=5+17k(2) (k là số tự nhiên) 
Thay (2) vào (1)  x=19(5+17k)+12=323k+107
Trả lời: x=323k +107 (cho k =0,1,2,3,...)  x=107 ;430;753;1076

Tạ Quang Duy
9 tháng 9 2015 lúc 11:15

ảnh của Lê Duy Khang ngộ ghê

ninja sóc nhí
Xem chi tiết
Trần Huyền Trang
30 tháng 11 2018 lúc 21:53

Gọi tt là số tự nhiên cần tìm.

t:15t:15 dư 5⇒t=17m+55⇒t=17m+5

t:19t:19 dư 11⇒t=19n+1111⇒t=19n+11

Do đó:

t+216=17m+221⋮17t+216=17m+221⋮17

t+216=17n+2280⋮19t+216=17n+2280⋮19

⇒t+216⋮17⇒t+216⋮17 và ⋮19⋮19

Mà tt là số tự nhiên nhỏ nhất nên t+216t+216 là BCNN(17;19)BCNN(17;19)

BCNN(17;19)=323BCNN(17;19)=323

⇒t+216=323⇒t+216=323

⇒t=323−216=107⇒t=323−216=107

Vậy, số cần tìm là 107.

yêu ah nhé
8 tháng 1 2019 lúc 20:48

bn trang lm dài và rối lắm

Lê Thị Kim Oanh
Xem chi tiết
Nguyen MinhHuyen
6 tháng 1 2016 lúc 18:20

 Gọi a là số tự nhiên cần tìm. 
a chia 17 dư 5 => a = 17m + 5 
a chia 19 dư 12 => a = 19n + 12 
Do đó: 
a + 216 = 17m + 221 chia hết cho 17. 
a + 216 = 17n + 228 chia hết cho 19 
=> a + 216 chia hết cho 17 và chia hết cho 19. 
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19. 
BCNN(17 , 19) = 17.19 = 323. 
=> a + 216 = 323 
=> a = 323 - 216 
Vậy a = 107. 

Mình đưa ra cách giải đơn giản theo phương pháp sau để bạn áp dụng: 
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3. 
Giả sử x < y < z 
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho 
a + B(z) + r3 chia hết cho x, y, z 
Khi đó a + B(z) + r3 là BC(x, y, z)