Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Trâm
Xem chi tiết
Ngọc Lan Tiên Tử
19 tháng 6 2019 lúc 8:55

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

Nguyen Minh Ha
Xem chi tiết
Võ Đông Anh Tuấn
18 tháng 7 2016 lúc 15:04

Bạn ơi tham khảo nha :

Thư viện Đề thi & Kiểm tra

Chỉ cần kich vào thôi

Chúc bạn học giỏi

nguyễn khánh linh
Xem chi tiết
Trần Bình Nguyên
29 tháng 9 2016 lúc 15:25

Do a3+b3+c3=1;a+b+c=1→a3+b3+c3=a+b+c→3(a+b)(b+c)(c+a)=0→a=−b hoặc b=−c hoặc c=−aa3+b3+c3=1;a+b+c=1→a3+b3+c3=a+b+c→3(a+b)(b+c)(c+a)=0→a=−b hoặc b=−c hoặc c=−a
Nếu a=−ba=−b thì a2005+b2005+c2005=a2005−a2005+c2005=c2005=1 vì a-a+c=1a2005+b2005+c2005=a2005−a2005+c2005=c2005=1 vì a-a+c=1
Tương tự ta cũng được a2005+b2005+c2005=1a2005+b2005+c2005=1
Vậy với a+b+c=1;a3+b3+c3=1a+b+c=1;a3+b3+c3=1 thì a2005+b2005+c2005=1

do máy mình bị lỗi bàn phím nên giả sử a3 thì là a mũ 3 nha

cảm ơn

Never and never
Xem chi tiết
Nguyễn Thu Hiền
Xem chi tiết
alibaba nguyễn
9 tháng 3 2018 lúc 11:12

Ta có:

\(a^2+b^2+c^2=1\)

\(\Rightarrow-1\le a,b,c\le1\)

Lấy 2 cái trên trừ nhau ta được

\(\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)=0\)

Ta có \(\left(a^2-a\right),\left(b^2-b\right),\left(c^2-c\right)\)cùng dấu nên dấu = xảy ra khi

\(\left(a,b,c\right)=\left(0,0,1;0,1,0;1,0,0\right)\)

\(\Rightarrow\)ĐPCM

Stephen Hawking
Xem chi tiết
Trịnh Anh Nguyễn
Xem chi tiết
Akai Haruma
25 tháng 11 2018 lúc 12:44

Câu a:

\(a+b+c=0\Rightarrow a=-b-c\)

\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)

\(=2bc\)

\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$

Akai Haruma
25 tháng 11 2018 lúc 12:47

Câu b:

Thay $2005=abc$ ta có:

\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)

Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$

(đpcm)

Tiểu Bảo Bối
Xem chi tiết
park jimin
Xem chi tiết
Nope...
11 tháng 8 2019 lúc 9:45

\(\hept{\begin{cases}a+b=c+d\Rightarrow\left(a+b\right)^2=\left(c+d\right)^2\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\\a^2+b^2=c^2+d^2\end{cases}}\)

\(\Rightarrow2ab=2cd\Rightarrow ab=cd\Rightarrow\frac{a}{d}=\frac{b}{c}=k\Rightarrow\hept{\begin{cases}a=dk\\b=ck\end{cases}}\)

Xét \(a^2+b^2=c^2+d^2\Leftrightarrow\left(dk\right)^2+b^2=\left(ck\right)^2+d^2\Leftrightarrow d^2\left(k^2-1\right)=b^2\left(k^2-1\right)\)

\(\Leftrightarrow\left(d^2-b^2\right)\left(k^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}d^2-b^2=0\\k^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}d=\pm b\\k=\pm1\end{cases}}\Rightarrow\orbr{\begin{cases}a=\pm c\\a=\pm d;c=\pm b\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}d^{2005}=b^{2005};a^{2005}=c^{2005}\\a^{2005}=d^{2005};c^{2005}=b^{2005}\end{cases}\Rightarrow\orbr{\begin{cases}a^{2005}+b^{2005}=c^{2005}+d^{2005}\\a^{2005}+b^{2005}=c^{2005}+d^{2005}\end{cases}}}\)

\(\Rightarrow a^{2005}+b^{2005}=c^{2005}+d^{2005}\left(đpcm\right)\)