Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Trà
Xem chi tiết
Nguyen
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Mavis Dracula
Xem chi tiết
Tran Le Khanh Linh
8 tháng 3 2020 lúc 15:12

a=2 => Hệ vô nghiệm \(\hept{\begin{cases}x\in R\\y=\frac{5-2x}{2}\end{cases}}\)

a=-2 => Hệ vô nghiệm

a\(\ne\pm2\)=> Hệ có nghiệm duy nhất \(\left(\frac{5+2a}{2+a};\frac{1}{2+a}\right)\)

Khách vãng lai đã xóa
Ngô Chí Vĩ
Xem chi tiết
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 23:16

\(\left\{{}\begin{matrix}4x-my=m-4\\\left(2m+6\right)x+y=2m+1\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{4}{2m+6}< >\dfrac{-m}{1}\)

=>\(-2m^2-6m< >4\)

=>\(-2m^2-6m-4\ne0\)

=>\(-2\left(m^2+3m+2\right)\ne0\)

=>\(m^2+3m+2\ne0\)

=>\(\left(m+1\right)\left(m+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}m+1\ne0\\m+2\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne-1\\m\ne-2\end{matrix}\right.\)

=>\(m\notin\left\{-1;-2\right\}\)

Để hệ phương trình vô nghiệm thì \(\dfrac{4}{2m+6}=\dfrac{-m}{1}\ne\dfrac{m-4}{2m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{2m+6}=-m\\\dfrac{-m}{1}\ne\dfrac{m-4}{2m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m^2-6m=4\\-2m^2-m\ne m-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m^2-6m-4=0\\-2m^2-2m+4\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2+3m+2=0\\m^2+m-2\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)\left(m+2\right)=0\\\left(m+2\right)\left(m-1\right)\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m+1=0\\m+2=0\end{matrix}\right.\\\left\{{}\begin{matrix}m+2\ne0\\m-1\ne0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{-1;-2\right\}\\m\notin\left\{-2;1\right\}\end{matrix}\right.\Leftrightarrow m=-1\)

Để hệ phương trình có vô số nghiệm thì \(\dfrac{4}{2m+6}=\dfrac{-m}{1}=\dfrac{m-4}{2m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{2m+6}=-m\\\dfrac{m-4}{2m+1}=-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=\dfrac{2}{m+3}\\m-4=-m\left(2m+1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m^2-3m=2\\m-4+2m^2+m=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+3m=-2\\2m^2+2m-4=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2+3m+2=0\\m^2+m-2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+2\right)\left(m+1\right)=0\\\left(m+2\right)\left(m-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{-2;-1\right\}\\m\in\left\{-2;1\right\}\end{matrix}\right.\)

=>m=-2

Đông_DJRQ_96
Xem chi tiết
Khánh An
Xem chi tiết
Agatsuma Zenitsu
24 tháng 1 2020 lúc 14:50

\(b,\hept{\begin{cases}x-my=3\left(1\right)\\mx-4y=m+4\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Rightarrow x=my+3\)

Thay \(x\)vào \(\left(2\right):\left(m^2-4\right)y=4-2m\left(#\right)\)

- Nếu \(m^2-4=0\Leftrightarrow\left(m-2\right)\left(m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

Xét từng giá trị của m sau:

\(m=2:\left(#\right)0y=0\)(Luôn đúng)

Hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\inℝ\end{cases}}\)

\(m=-2\)\(\left(#\right)\Leftrightarrow0y=8\left(vn\right)\)

Vậy hệ vô nghiệm

- Nếu \(m\ne\pm2\)ta có: \(\left(#\right)\Leftrightarrow y=\frac{4-2m}{m^2-4}\Leftrightarrow y=-\frac{2}{m+2}\)

Ta tìm được \(x=\frac{m+6}{m+2}\)

Hệ có nghiệm: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

Vậy: \(m=2\)thì hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\in R\end{cases}}\)

\(m=-2\)hệ vô nghiệm

\(m\ne\pm2\)hệ có nghiệm duy nhất: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

Khách vãng lai đã xóa
Game Master VN
19 tháng 3 2020 lúc 6:41

https://olm.vn/hoi-dap/detail/247392111572.html

Khách vãng lai đã xóa
Nguyễn Phương Mai
19 tháng 3 2020 lúc 6:41

chịu em mới lớp 7

Khách vãng lai đã xóa
Giang Do
Xem chi tiết