Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyệt Hà
Xem chi tiết
Akai Haruma
9 tháng 1 2017 lúc 16:23

Lời giải:

Áp dụng BĐT AM-GM cho hai số $x,y$ dương ta có \(xy\leq \left(\frac{x+y}{2}\right)^2\Rightarrow \frac{4xy}{(x+y)^2}\leq 1\)

\(\Rightarrow P\leq \frac{4z}{x+y}+\frac{z^2}{(x+y)^2}+1\). Đến đây đặt \(\frac{z}{x+y}=t\). Vì \(x,y,z\in[1;2]\Rightarrow t\in[\frac{1}{4};1]\).

Khi đó \(P\leq t^2+4t+1\leq 1+4+1=6\)

Vậy $P_{max}=6$. Dấu $=$ xảy ra khi \(x=y=1;z=2\)

Hoàng Thị Quỳnh
Xem chi tiết
Võ Thị Quỳnh Giang
28 tháng 11 2017 lúc 21:09

ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)    (x;y;z khác 0)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\)  (vì x;y;z khác 0)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=>  x+y=0 hoặc y+z=0 hoặc z+x=0

mà x+y+z=2006 nên

z=2006 hoặc x=2006 hoặc y=2006 

=> đpcm

Trần Tuấn Anh
Xem chi tiết
Khanh Nguyễn Ngọc
8 tháng 9 2020 lúc 15:38

Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi

Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))

Khách vãng lai đã xóa
Trần Tuấn Anh
12 tháng 9 2020 lúc 18:39

Mình cần câu a ạ :<

Khách vãng lai đã xóa
Khanh Nguyễn Ngọc
12 tháng 9 2020 lúc 18:52

Mình sorry vì hôm trước bảo câu a sai nha

Cách giải câu a này:

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(\Leftrightarrow2xyz=\left(xy+yz+zx\right)-\left(x+y+z\right)+1\)

Ta có BĐT:  \(xy+yz+zx\le x^2+y^2+z^2\)(BĐT này chắc bạn thấy nhiều lần roi, mình ko chứng minh lại nha)

\(\Rightarrow2xyz\le\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+1=\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\left(z+\frac{1}{2}\right)^2+\frac{1}{4}\)

\(\Rightarrow2xyz\le\frac{1}{4}\Leftrightarrow xyz\le\frac{1}{8}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{2}\)

Xét \(x,y,z>0\Rightarrow xyz>0\)

Vậy \(0< xyz\le\frac{1}{8}\)

Khách vãng lai đã xóa
Nguyen Alice
Xem chi tiết
Thắng Nguyễn
4 tháng 6 2018 lúc 12:12

hây ya bài này làm chán thấy m3 luôn đó

Nguyen Alice
4 tháng 6 2018 lúc 12:32

Thì bạn giải giúp mình đi

Thắng Nguyễn
4 tháng 6 2018 lúc 19:29

\(\frac{x+1}{y^2+1}=x+1-\frac{xy^2+y^2}{y^2+1}\ge x+1-\frac{xy^2+y^2}{2y}=x+1-\frac{xy+y}{2}\)

tiếp đó bạn dùng BĐT \(\text{xy+yz+xz}\le\frac{\left(x+y+z\right)^2}{3}\)

Không Có Tên
Xem chi tiết
Lâm Dương
24 tháng 1 2018 lúc 17:17

Bài 1: Cho ba số x,y,z khác 0 thỏa mãn:
{xyz=11x+1y+1z<x+y+z{xyz=11x+1y+1z<x+y+z
Chứng minh rằng có đúng một trong ba số x,y,z lớn hơn 1.

{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z
⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM 

Tạ Duy Phương
Xem chi tiết
Hoàng Thanh
Xem chi tiết
Phan Thị Thùy Trang
Xem chi tiết
Thắng Nguyễn
28 tháng 6 2017 lúc 20:39

CMR a+2b+c >= 4(1-a)(1-b)(1-c) - Bất đẳng thức và cực trị - Diễn đàn Toán học

Phan Thị Thùy Trang
28 tháng 6 2017 lúc 21:02

bạn có thể giải giúp mình bài toán nay ko. giúp mình nha

Phan Thị Thùy Trang
28 tháng 6 2017 lúc 21:04

bạn giải ra cho mình đc ko

Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
24 tháng 1 2017 lúc 12:01

x+z=144-\(\sqrt[3]{46656}=144-3.12=108\)

ngonhuminh
24 tháng 1 2017 lúc 11:20

\(x+z=144-y;xyz=\left(xk\right)^3=y^3=46656\Rightarrow x+z=144-\sqrt[3]{46656}\)

PT con 46656 xem 

=36.1296=36.9.144=3.12.9.12.12=(3.12)^3

x+z=0

ngọn gió băng giá
24 tháng 1 2017 lúc 12:49

DS:78 mình làm rồi vong 13