cho tam giác ABC. Lấy M và N là trung điểm của AB và AC. E là trung điểm của AM. EN cắt BC tại F
CMR: CF=1/2 BC
cho tam giác abc vuông cân tại a. điểm d thuộc bc sao cho bd=2dc. điểm f thuộc ab sao cho df vuông góc với ab. e là trung điểm của df. ae cắt bc tại m, be cắt ac tại n. a) chứng minh bf/fa=be/en=2 b) chứng minh tam giác aef đồng dạng với tam giác bdf và ae=1/3bc c) gọi p là giao điểm của am và cf. chứng minh fp=1/4fc
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác ABC có D;E;F lần lượt là trung điểm của BC;AC;AB. Trên BC lấy hai điểm M và N sao cho BM=MN=NC. Gọi AM cắt BE tại P. AN cắt CF tại Q. Chứng minh rằng: D;P;F thẳng hàng.
cho tam giác ABC M là trung điểm của AB. Đường thẳng qua M và song song với AC cắt BC tại N,đường thẳng qua N và song song với AB cắt AC tại E . cmr
1 ,tam giác AME=tamgiac NÊM và BM=EN
2,BMN=NEC
3,N là trung điểm của BC
cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP
1, CM: AE=CP=EB
2, tam giác BEC= tam giác PCE
3,CM: EN // BC,EN= BC
4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC
5, So sánh các đương trung tuyến của tam giác BGD với các cạnh của tam giác abc
6, Từ E ke đường thẳng song song với BC cắt AM tại K.CM K là trung điểm của AM. CM G là trọng tâm của tam giác MNE
7, Đường thẳng ck cắt ab tại I. J là trung điểm của AJ và AI =\(\(\(\frac{1}{3}\)\)\)AB
8, CMR trong 3 dường trung tuyến của tam giác ABC tổng 2 đường còn lại
9, Trên tia AB lấy điểm B' sao cho B là trung điểm EB' .Trên tia HC lấy điểm C' sao cho C là trung điểm của AC. CM B',M,A" thẳng hàng
10, Cho AM =12cm, BN= 2cm, CF =15 cm. Tính BA
11, G là trọng tâm của tam giác ABC, coa cạnh BC cố định. CMR đường thẳng AG luôn đi qua 1 điểm cố định khi A thay đổi
12, Cho điểm O thay đổi trong tam giác ABC. Lấy O sao cho M' là trung điểm của OO'. Gọi M là trung điểm AO'. CM OM' luôn luôn đi qua 1 điểm cố định
Cho tam giác ABC vuông tại A. AB = 7,5 cm; BC = 12,5 cm.
a) Tính diện tích tam giác ABC.
b) Lấy điểm M trên cạnh AB sao cho AM : MB = 1 : 2. Từ M kẻ đường thẳng song song với BC cắt trung tuyến AF tại E và cắt cạnh AC tại N. Chứng minh E là trung điểm của MN.
c) Gọi G, H lần lượt là trung điểm của MC, BN. Chứng minh EGFH là hình chữ nhật và tính diện tích của nó.
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
cho tam giác abc,ab=ac, m là trung điểm bc. md là tia đối ma và =ma. e là trung điểm am, f là trung điểm dm, be cắt ac tại h, cf cắt bd tại k. cmr bc, ad,hk đồng qui tại m
1. Cho tam giác ABC cân tại A. Đường cao BH và CK cắt nhau ở M
a) CM: BH=CK
b) tam giác BMC cân
c) KH//BC
d) Trên tia đối của tia CA lấy N sao cho: CH=CN. Cm: BC đi qua trung điểm của KN
e) Qua B kẻ đường thẳng vuông góc với BC cắt CK ở I. Cm: góc IBK= góc HAM
Bài 1 em chỉ k biết làm câu d và e
2. Cho tam giác ABC. Trên tia BA lấy điểm E, trên tia CA lấy điểm F sao cho BE+CF=CF. Cm: đường trung trực của đoạn EF luôn đi qua một điểm cố định.
3. Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy M,N sao cho AM+AN=AB. Gọi K là trung điểm của mN. Cm: K thuộc 1 đường thẳng cố định
Cho tam giác ABC , D, E lần lượt là trung điểm của AB và AC. Lấy điểm M sao cho D là trung điểm của AB và AC. Lấy điẻm M sao cho D là trung điểm của của CM, lấy điểm N sao cho E là trung điểm của BN. Chứng minh:
a) AM=BC, AM song song BC
a: Xét tứ giác AMBC có
D là trung điểm của AB
D là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC và AM=BC