Cho a,b,x,y thuộc Z trong đó x;y khony6 đối nhau. CMR nếu ax-by chia hết cho x+y thì ay- bx chia hết cho x+y
Cho a,b,x,y thuộc Z trong đó x,y không đối nhau .C hứng minh rằng a . x - b . y chia hết x + y thì a.y - b . x chia hết x + y
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
Cho a,b,x,y thuộc Z trong đó x;y không đối nhau.CMR nếu ax-by chia hết cho x+y thì ay-bx chia hết cho x+y.
Cho A = a^xb^yc^z. Trong đó a,b,c là các số nguyên tố đôi một khác nhau còn x,y,z ... thuộc N sao. CMR : Tô (A) = (x+1)(y+1)(z+1)
Cho a,b,x,y thuộc Z trong đó x,y ko đối nhau .
CMR nếu ax - by chia hết cho x +y thì ay -bx chia hết cho x + y .
( ax - by ) + ( ay - bx ) = ax - by + ay - bx
= ( ax + ay ) - ( by + bx )
= a . ( x + y ) - b . ( y + x )
= ( a -b ) . ( x + y )\(⋮\) x + y
Vậy ( ax - by ) + ( ay - bx )\(⋮\) x + y ( 1 )
Vì ax - by\(⋮\) x + y ( 2 )
từ ( 1 ) và ( 2 )\(\Rightarrow\)ay - bx chia hết cho x + y
Ta có: (ax - by) + (ay - bx)
= ax - by + ay - bx
= (ax + ay) - (bx + by)
= a.(x+y) - b.(x+y)
= (a-b).(x+y)
Vì \(x+y\ne0\)\(\Rightarrow\)\(\left(a-b\right).\left(x+y\right)⋮x+y\)
\(\Rightarrow\)\(\left(ax-by\right)+\left(ay-bx\right)⋮x+y\)
Vậy nếu ax-by chia hết cho x+y thì .......
( ax - by ) + ( ay - bx ) = ax - by + ay - bx
= ( ax + ay ) - ( by + bx )
= a . ( x + y ) - b . ( y + x )
= ( a -b ) . ( x + y ) x + y
Vậy ( ax - by ) + ( ay - bx ) x + y ( 1 )
Vì ax - by x + y ( 2 )
từ ( 1 ) và ( 2 )ay - bx chia hết cho x + y
Cho a,b,x,y thuộc Z trong đó x,y không đối nhau.
CMR: nếu ax - by chia hết cho x + y thì ay - bx chia hết cho x + y
Bài 1: Cho a, b, x, y thuộc Z, trong đó x, y không đối nhau. Chứng minh rằng nếu a.x - b.y ⁞ x+y thì a.y - b.x ⁞ x+y thì a.y - b.x ⁞ x+y.
Bài 2: Cho:
A = 1 + 2 - 3 - 4 + 5 + 6 -...- 99 - 100
a) A có chia hết cho 2, 3, 5 không?
b) Tìm số các ước nguyên của A.
Bài 3: Tìm x, y thuộc Z biết:
a) xy +3x - 7y = 21.
b) xy + 3x - 2y =11.
c) [x+1] + [x+2] +...+ [x+100] = -1.
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Cho x thuộc tập hợp Q. So sánh [x] với x, so sánh [x] với y trong đó y thuộc tập hợp Z, y<x?
Bài 1 : tìm x thuộc N
a) x - { x - [( -x + 1 )]}
b) ( x + 5 ) . ( x -2 ) < 0
Bài 2 :
Tìm x, y thuộc Z
a ) ( x+1).(xy-1)
b) 3x + 4y - xy =15
Bài 3 : Tìm x,y,z thuộc N : 26^x= 25^y = 26^z
Bài 4 : x-y=2011
y - z = -2012
z + x = 2013
Bài 5 :
tìm phân số bằng phân số 20/39 pít UWCLN của tử và mẫu của phân số đó là 36
Bài 6 :
Tìm a,b thuộc N biết :
BCNN ( a,b) = 180
UWCln ( a,b ) 12
Bài 7:
tìm a,b biết :
UwCLN ( a,b)+ BCNN ( a,b) =23
Bài 8 :
tìm x, y thuộc N*: y+1 chia hết cho x
x + 1 chia hết cho y
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
Bài 7 :
gọi UWCLN ( a,b ) = d ( d thuộc N*)
=> a = d .m, b = d . n
( m,n)=1
BCNN ( a,b) = d . m. n
mà UWCLN (a,b )+ BCNN (a,b ) = 23
=> d + dmn = 23
=> d .( 1+mn) =23
........ v.v
tử từng t/h
Đ/S : vs m = 2 2 => n=1 hoặc m=11, n=2
vs a = 22 => b =1 hoặc a =11 => b = 2
Bài 7:Đ/s : x=1,y=1
x=3, y=2
x=1,y=2
x=2,y=3
x=2,y=1
1/ Tìm x, y, z thuộc Z biết
x - y = -9
y - z = -10
z + x = 11
2/ Cho ab = cd=1 và d = a + b -c
Chứng tỏ: a = b
3/ Cho 3 số a, b, c trong đó có 1 số dương, 1 số âm và 1 số bằng 0
biết /a/ = b2( b - c) thỏa số nào dương. Số cần tìm. Số nào = 0
1/ x = -4 ; y = 5 ; z = 15
2/ vì ab = 1 = -1 . ( -1 ) = 1 . 1 và bằng nhau nên a = b
3/
caca ban co the cho minh biết cach lam ko