Tìm m để bpt sau có nghiệm
mx2 + 6mx + 8m -10 < 0
Tìm m để bpt: x2 + (m - 2)x - 8m ≥ 0 với ∀x ≤ 0
\(x^2+\left(m-2\right)x-8m\ge0\)
\(\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2\\x_1x_2\ge0\end{matrix}\right.< 0\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-4\left(-8m\right)\ge0\\-m+2< 0\\-8m\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4+32m\ge0\\m>2\\m\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+14-8\sqrt{3}\right)\left(m+14+8\sqrt{3}\right)\ge0\\m>2\\m\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left[{}\begin{matrix}m+14-8\sqrt{3}\ge0\\m+14+8\sqrt{3}\ge0\end{matrix}\right.\\\left[{}\begin{matrix}m+14-8\sqrt{3}\le0\\m+14+8\sqrt{3}\le0\end{matrix}\right.\end{matrix}\right.\\m>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left[{}\begin{matrix}m\ge-14+8\sqrt{3}\\m\ge-14-8\sqrt{3}\end{matrix}\right.\\\left[{}\begin{matrix}m\le-14+8\sqrt{3}\\m\le-14-8\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\m>2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge-14+8\sqrt{3}\\m\le-14-8\sqrt{3}\end{matrix}\right.\\m>2\end{matrix}\right.\)
\(\Leftrightarrow m>2\)
Vậy ...
Tìm m để phương trình x 6 + 6 x 4 - m 3 x 3 + 15 - 3 m 2 x 2 - 6 m x + 10 = 0 có đúng hai nghiệm phân biệt thuộc 1 2 ; 2
A. 11 5 < m < 4
B. 2 < m ≤ 5 2
C. 0 < m < 9 4
D. 7 5 ≤ m < 3
Chọn đáp án B
Phương trình đã cho tương đương với:
Xét hàm số f t = t 3 + 3 t trên ℝ
Tacó f ' t = 3 t 2 + 3 > 0 , ∀ t ∈ ℝ nên hàm số f t đồng biến trên ℝ
Suy ra
Xét hàm số g x = x + 1 x trên 1 2 ; 2
Ta có g ' x = 1 - 1 x 2
Bảng biến thiên:
Dựa vào bảng biến thiên, để phương trình đã cho có hai nghiệm phân biệt trên 1 2 ; 2
⇔ Đường thẳng y = m cắt đồ thị hàm số g x = x + 1 x tại hai điểm phân biệt trên 1 2 ; 2
⇔ 2 < m ≤ 5 2
Tìm m để phương trình x 6 + 6 x 4 - m 3 x 3 + ( 15 - 3 m 2 ) x 2 - 6 m x + 10 = 0 có đúng hai nghiệm phân biệt thuộc [1/2;2]
A.
B.
C.
D.
tìm m để phương trình sau vô nghiệm
6mx+4m-12=0
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x 3 − 7 x 2 + 2 m 2 + 6 m x − 8 = 0.
A. m = -7
B. m= 1
C. m = -1 hoặc m= 7
D. m = 1 hoặc m = -7
Chọn D
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x 1 , x 2 , x 3 lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có x 1 . x 2 . x 3 = 8
Theo tính chất của cấp số nhân, ta có x 1 x 3 = x 2 2 . Suy ra ta có x 2 3 = 8 ⇔ x 2 = 2.
Với nghiệm x=2, ta có m 2 + 6 m − 7 = 0 ⇔ m = 1 m = − 7
+ Điều kiện đủ: Với m= 1 hoặc m = -7 thì m 2 + 6 m = 7 nên ta có phương trình: x 3 − 7 x 2 + 14 x − 8 = 0.
Giải phương trình này, ta được các nghiệm là 1,2,4 Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2
Vậy m= 1 và m= -7 là các giá trị cần tìm.
Tìm m để bpt sau có tập nghiệm là R: (m-4)x^2 +( 2m-8)x +m -5<0
Có bao nhiêu số nguyên m để bất phương trình x 6 + 6 x 4 + 15 - 3 m 2 x 2 - 6 m x + 10 ≥ 0 nghiệm đúng với mọi số thực x.
A. 4
B. 3
C. Vô số
D. 5
Chọn đáp án D.
Bất phương trình tương đương với
trong đó hàm số f t = t 3 + 3 t đồng biến trên R
Vậy y c b t ⇔ x 2 - m x + 1 ≥ 0 , ∀ x
Có 5 số nguyên thoả mãn
Có bao nhiêu số nguyên m để bất phương trình x 6 + 6 x 4 - m 3 x 3 + 15 - 3 m 2 x 2 - 6 m x + 10 ≥ 0 nghiệm đúng với mọi số thực x.
A. 4
B. 3
C. Vô số
D. 5
Bất phương trình tương đương với:
trong đó hàm số f ( t ) = t 3 + 3 t đồng biến trên R.
Vậy
Có 5 số nguyên thoả mãn.
Chọn đáp án D.
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)