Có hay không 3 số nguyên lẻ a, b, c thỏa mãn: a^2+b^2+c^2=2000^2
Có hay không 3 số nguyên lẻ a,b,c thỏa mãn a2 +b2-c2=20002
a^2 + b^2 - c^2 = 2000^2
<=> b^2 - c^2 = 2000^2 - a^2
<=> (b + c)(b - c) = (2000 - a)(2000 + a)
Vì b + c > b - c ; 2000 + a > 2000 - a
=> b + c = 2000 + a ; b - c = 2000 - a
Xét b + c = 2000 + a <=> b + c - a = 2000
Xét b - c = 2000 - a <=> b - c + a = 2000
=> b + c - a = b - c + a
<=> -2a = -2c <=> a = c
Thay a = c vào đề bài, được b^2 = 2000^2 => b = 2000 hoặc -2000 (loại cả hai vì b phải lẻ)
Vậy không có 3 số lẻ a; b; c sao cho thỏa mãn đề bài
Vì a, b, c là số lẻ => a2, b2, c2 là 3 số lẻ.
Vế trái lẻ, vế phải chẵn => Không tồn tại 3 số nguyên thỏa điều kiện.
a)cho n là số tự nhiên lẻ. Tìm số dư khi chia n^2 cho 8.
b)Có hay không 3 số tự nhiên lẻ a,b,c thỏa mãn: a^2+b^2-c^2=2016.
n^2= (2k+1)^2=4k^2+4k+1
k=2t=> 16t^2+8t+1 chia 8 luon du 1
k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1
ket luan: so du n^2 chia 8 luon du 1
a^2+b^2-c^2=2016=2^3.3^2.23
4m^2+4m+4n^2+4n-4p^2-4p+2=2016
2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai
VP chan VT luon le
bài này khó quá, tớ làm được nhưng dài lắm
chứng minh rằng nếu có sau số nguyên a,b,c,d,e,g thỏa mãn a^2+b^2+c^2+d^2+e^2=g^2 thì cả sáu số không đồng thời là số lẻ
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Chứng minh rằng nếu có sáu số nguyên a ,b ,c ,d ,e, g thỏa mãn \(a^2+b^2+c^2+d^2+e^2=g^2\)thì cả sáu số không đồng thời là số lẻ
Giả sử a,b,c,d,e,g đồng thời là lẻ
1 số chính phương lẻ khi chia 8 chỉ dư 1
=>a2+b2+c2+d2+e2 chia 8 dư 5
Ta có vế trái chia 8 dư 5, vế phải chia 8 dư 1, phương trình ko xảy ra
Vậy 6 số đã cho ko thể đồng thời là số lẻ
Gỉa sử tồn tại a,b,c,d,e,f,g thỏa mãn=>\(a^2,b^2,c^2,d^2,e^2\)chia 8 dư 1=> \(g^2\)chia 8 dư 5=> ko là số chính phương
=>ko tồn tại a,b,c,d,e,g lẻ
Cho các số nguyên dương thỏa mãn: \(a^2+b^2=c^2+d^2\). Có thể khẳng định rằng a+b+c+d là hợp số hay không?
Chứng minh rằng nếu có cả sáu số nguyên a;b;c;d;e;g thỏa mãn a^2+b^2+c^2+d^2+e^2=g^2 thì cả sáu số không đồng thời là số lẻ.
Giả sử cả 6 số a,b,c,d,e,g đều đồng thời là các số lẻ.
Áp dụng bài toán phụ:1 số chính phương lẻ khi chia 8 chỉ dư 1
=>a2+b2+c2+d2+e2 chia cho 8 dư 5
Mà g2 chia 8 dư 1
Kết hợp 2 điều trên =>Vô lí
=>5 số trên không đồng thời là số lẻ
Vậy ...
1. Tồn tại hay không 5 số nguyên \(a;b;c;d;e\) thỏa mãn đẳng thức
\(a^2+b^2=\left(a+1\right)^2+c^2=\left(a+2\right)^2+d^2=\left(a+3\right)^2+e^2\)
2. Cho các số nguyên dương \(a;b;c;d\) thỏa mãn \(\hept{\begin{cases}a^2+1=bc\\c^2+1=ad\end{cases}}\)
Chứng minh \(b+c=3a\)
3. Cho tập hợp \(A=\left\{1;2;3;...;2017\right\}.\) Có bao nhiêu tập hợp con của A sao cho tổng bình phương các phần tử của tập hợp con đó là số lẻ?
Tồn tại hay không các số nguyên a,b,c thỏa mãn:
a(b - c)(b + c - a)2 + c(a - b)(a + b- c)2=1