tìm số nguyên x y thoả mãn
y(x-2)+3x-6=2 ****
tìm x nguyên :9x+5 là tích của 2 số nguyên liên tiếp
tìm x,y nguyên thoả mãn :xy+3x-y=6
tìm x,y nguyên thoả mãn :x2−22=1x2−2y2=1
tìm x,y nguyên thoả mãn :xy+3x-y=6
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
a.Tìm x, y nguyên biết: xy + 3x - y = 6
b. Tìm mọi số nguyên tố thoả mãn: x2 - 2y2 = 1
c. Tìm các số nguyên thoả mãn: x - y + 2xy = 7
d. Tìm x, y thuộc N biết : 25 - y2 = 8( x - 2012)2
Tìm cặp số nguyên (x;y) thoả mãn:
\(x^2y+xy-2x^2-3x+4=0\)
Tìm x,y nguyên thoả mãn
a) x^2 +6x+6=y^2
b) 3x^2 +5y^2=345
x=-1;y=1
x=-1;y=-1
x=-5;y=-1
x=-5;y=1
a)(x+3)^2-3=y^2
(x+3-y)(x+3+y)=3
y=+-1
x={-5, -1}
\(x^2+6x+6=y^2\\ \left(x+3\right)^2-y^2=3\\ \left(x-y+3\right)\left(x+y+3\right)=3\)
Vì x,y nguyên nên x-y+3 và x+y+3 nguyên
=>\(\left(x-y+3\right)\left(x+y+3\right)=-1\cdot3=1\cdot-3=3\cdot-1=-3\cdot1\)
TH1:
\(\hept{\begin{cases}x-y+3=-1\\x+y+3=3\end{cases}=>\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x-y+3=1\\x+y+3=-3\end{cases}=>\hept{\begin{cases}x=-4\\y=-2\end{cases}}}\)
TH3:
\(\hept{\begin{cases}x-y+3=3\\x+y+3=-1\end{cases}=>\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)
TH4:
\(\hept{\begin{cases}x-y+3=-3\\x+y+3=1\end{cases}=>\hept{\begin{cases}x=-4\\y=2\end{cases}}}\)
tìm cặp số nguyên x biết (3x-5) chia hết cho (x+2 )
tìm cặp số nguyên (x,y) thoả mãn (x+3)(2y+1)=14
\(\left(3x-5\right)⋮\left(x+2\right)\)
\(\Rightarrow3.\left(x+2\right)-11⋮\left(x+2\right)\)
Vì \(3.\left(x+2\right)⋮\left(x+2\right)\)
\(\Rightarrow11⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự lập bảng :) T lười qá
\(\left(x+30\right)\left(2y+1\right)=14\)
\(\Rightarrow\left(x+30\right)\left(2y+1\right)=1.14=14.1=2.7=7.2=\left(-1\right)\left(-14\right)=\left(-14\right)\left(-1\right)=\left(-2\right)\left(-7\right)=\left(-7\right)\left(-2\right)\)Tự lập bảng và tìm giá trị của x, y :)
Tìm số nguyên x,y thoả mãn: 3x^2 + 4y^2 +12x +3y +5=0 Giúp mình với ạ
Lời giải:
$3x^2+4y^2+12x+3y+5=0$
$\Leftrightarrow 3(x^2+4x+4)+4y^2+3y-7=0$
$\Leftrightarrow 3(x+2)^2+(2y+\frac{3}{4})^2-\frac{121}{16}=0$
$\Leftrightarrow 3(x+2)^2=\frac{121}{16}-(2y+\frac{3}{4})^2\leq \frac{121}{16}$
$\Rightarrow (x+2)^2\leq \frac{121}{48}< 4$
$\Rightarrow -2< x+2< 2$
$\Rightarrow -4< x< 0$
$\Rightarrow x\in \left\{-3; -2; -1\right\}$
Đê đây bạn thay giá trị $x$ vào pt ban đầu để tìm $y$ thôi.
1,tìm các số nguyên dương x,y,z thoả mãn 3x2+6y2+z2+3y2z2-18x=6
2,tìm x là số tự nhiên sao cho Q=x3+x2+2025 là một số chính phương