Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Thương
Xem chi tiết
NguyenOanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2022 lúc 20:52

a: \(M=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3+2\left(x+y\right)^2\)

\(=7^3+2\cdot49=441\)

b: \(A=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37\)

\(=49+14+37=100\)

NguyenOanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 5 2022 lúc 9:46

b: \(x^2+y^2=\left(x+y\right)^2-2xy=25-12=13\)

c: \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=5^2-4\cdot6=1\)

=>x-y=1 hoặc x-y=-1

jhhdf
Xem chi tiết
Lê Anh Tú
24 tháng 3 2018 lúc 21:09

\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)

Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)

Khi đó a,b là 2 nghiệm của pt ẩn m: 

\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)

Tới đây bn tự làm tiếp.

Cao Hoài Phúc
Xem chi tiết
Min
16 tháng 10 2015 lúc 9:49

\(x^3+y^3+72=x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2+72\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+72\)

\(=14^3-3.48.14+72=800\)

Minh Đen
Xem chi tiết
Iruko
15 tháng 8 2015 lúc 16:22

B=[x^3+3xy(x+y)+y^3]-2(x^2+2xy+y^2)+3(x+y)+10

B=(x+y)^3-2(x+y)^2+3(x+y)+10

Thay vào

I love BTS
Xem chi tiết
Nguyễn Thanh Hiền
13 tháng 7 2018 lúc 13:41

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

\(\Rightarrow xy=5k.7k\)

\(\Rightarrow140=35k^2\)

\(\Rightarrow k^2=4\)

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2 ta có :

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Với k = -2 ta có :

+) \(\frac{x}{5}=-2\Rightarrow x=-10\)

+) \(\frac{y}{7}=-2\Rightarrow y=-14\)

Vậy  \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)

b) Ta có :

\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

+) \(\frac{x}{2}=3\Rightarrow x=6\)

+) \(\frac{y}{5}=3\Rightarrow y=15\)

+) \(\frac{z}{7}=3\Rightarrow z=21\)

Vậy x = 6, y = 15 và z = 21

_Chúc bạn học tốt_

Nguyễn Mai Hương
13 tháng 7 2018 lúc 13:23

a, x.y/5.7=140/35

=140/35=4

x/5=4/7

x/7=5/4

x.7=5.4

x.7=20

x=20;7

x=20/7

b,chịu

tk thì tk ko tk cx đc

Hoàng Ninh
13 tháng 7 2018 lúc 13:36

a, \(\frac{x}{5}=\frac{y}{7}\left(x.y=140\right)\)

Đặt \(\frac{x}{5}=\frac{y}{7}=k\)

\(\Rightarrow7x=5y\)

\(\Rightarrow x.y=7k.5k=35k^2=140\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2.7=14\\y=2.5=10\end{cases}}\\\hept{\begin{cases}x=\left(-2\right).7=-14\\y=\left(-2\right).5=-10\end{cases}}\end{cases}}\)

Vậy ....

b, \(x:y:z=2:5:7\left(3x+2y-z=27\right)\)

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Leftrightarrow x=2k;y=5k=z=7k\)

\(\Leftrightarrow3x+2y-z=6k+10k-7k=27\)

\(\Leftrightarrow x=6;y=15;z=21\)

Vậy ...

Minh Đen
Xem chi tiết
Nguyen Viet Bac
14 tháng 7 2017 lúc 12:48

a)

Ta có :

\(x+y=3\)

\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)

b)

Ta có :

\(x-y=5\)

\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)

=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)

Nguyễn Thiên Kỳ
Xem chi tiết
Nguyen van an
8 tháng 8 2017 lúc 15:27

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

Nguyen van an
8 tháng 8 2017 lúc 15:28

sai con khi

Yen Nhi
2 tháng 7 2021 lúc 10:23

\(1.\)

\(a)\)

\(x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=a^2-2b\)

\(b)\)

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=a[\left(x+y\right)^2-3xy]\)

\(=a\left(a^2-3b\right)\)

\(=a^3-3ab\)

\(c)\)

\(x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+2b^2\)

\(d)\)

\(x^5+y^5\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)

\(=a^5-5a^3b+5ab^2\)

Khách vãng lai đã xóa