S=1+2+.............+2015
Tinhs tổng
Câu 1: tính tổng s:=1+2+3..+n
Câu 2: Tính tổng s:=1+1/2+1/3+…+1/n
cho tổng S=1+2+2^2+2^3+....+2^59 a) so sánh tổng S với 2^60-1 b) chứng tỏ S chia hết cho 3,7,15
S=1+2+2^2+2^3+....+2^59 chia hết cho 3
S=(1+2)+(2^2+2^3)+..+(2^58+2^59)
S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)
S=1x3+2^2x3+....+2^58x3
S=3x(1+2^2+.....+2^58)chia hết cho 3
Vậy S chia hết cho 3
tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số
you học lớp mấy
a) Ta có: \(S=1+2+2^2+...+2^{59}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)
\(\Rightarrow S=2^{60}-1\)
bai 1 :tính tổng N=1^2+2^2+3^2+...+99^2
bài2: tính tổng A=1+4+9+16+25+36+...+100000
bài3: tính tổng S=1^2+3^2+5^2+...+49^2
bài4:tính tổng S=1^2+3^2+5^2+...+99^2
giúp mik với mik đang cần gấp
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
xin loi mik danh nham nhe bai do la 10000 nhe
Bài 8: Tính tổng S=1+2+3+4+…+n
Bài 9: Tính tổng S=1/1+1/2+1/3+1/4+…+1/n
Lập trình c++ nha mn
Bài 8:
Tổng số đầu và số cuối là: n + 1
Số cặp là: \(\dfrac{n}{2}\)
Tổng là: \(\dfrac{n}{2}\left(n+1\right)=\dfrac{n^2}{2}+\dfrac{n}{2}=\dfrac{n^2+n}{2}\)
Bài 8:
#include <iostream>
using namespace std;
int main()
{
int n, S;
cin >> n;
for(int i=1; i<=n; i++)
S+=i;
cout << S << endl;
return 0;
}
Bài 9:
#include <iostream>
using namespace std;
int main()
{
int n;
double S;
cin >> n;
for(int i=1; i<=n; i++)
S+=1.0/i;
cout << double(S) << endl;
return 0;
}
Chúc bn học tốt!
Xét tổng S gồm 20 số hạng:
S=1/1×2×3×4+1/2×3×4×5+...+1/20×21×22×23.
Hãy so sánh tổng S với 1/18
cậu ko giúp cậu ấy thì thôi đừng bảo như thế
1/ Đoạn chương trinh sau thực hiện i:=1; S:=0; While (i < N) Do begin S:=S+i; i:= i+2; end; Write('S = ',S);
a.Tinh tổng các số lẽ từ 1 đến N-1
b.Tính tổng các số từ 1 đến N
c.Tính tổng các số chân từ 1 đến N
d.Tính tổng các số lẽ từ 1 đến N
2/Var A: array[0..4] of byte; T: 0; For i:=0 to 4 do if a[i] div 3=0 then T:-T+ a[i]; Khi cho giá trị các phần của mảng lần lượt như sau: (9,2,12,1,6). Kết quả T?
a.3
b.27
c.2
d.38
Câu 1: A
Câu 2: Không có câu nào đúng
Sử dụng vòng lặp for...dovà while...do viết chươnmg trình
a. Tính tổng S = 1+2+3+...+100
b. Tính tổng S +1+1/2+1/3+...+1/10
C. Tính tổng S=1+2+3+..n ( n nhập từ bàn phím)
d. Tính tổng S= 1+1/2+1/3....+1/n ( n nhập từ bàn phím)
a.
Var i : integer;
S : real;
Begin
S:= 0;
For i:=1 to 100 do S:= S + i;
Write (S);
Readln;
End.
b.
Var i : integer;
S : real;
Begin
S:= 0;
For i:=1 to 10 do S:= S + 1/i;
Write (S);
Readln;
End.
c.
Var i,n : integer;
S : real;
Begin
write ('n = '); read (n);
S:= 0;
For i:=1 to n do S:= S + i;
Write (S);
Readln;
End.
d.
Var i : integer;
S : real;
Begin
write ('n = '); read (n);
S:= 0;
For i:=1 to n do S:= S + 1/i;
Write (S);
Readln;
End.
Cho tổng : S = 1 + 2 + 2^2 + 2^3 + . . . . . + 2^59
So sánh tổng S với 2^60 – 1Chứng tỏ rằng S chia hết cho 3, cho 7, cho 151. S = 1 + 2 + 2^2 +.........+ 2^59
2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60
2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)
S = 2^60 - 1
mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1
2.
Ta có : S = 1 + 2 +..............+ 2^59
S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)
S = 1.3 + 2^2.3 +...............+ 2^58.3
S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3
Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé
Cho tổng: S=1+2+2^2+2^3+...+2^2015. Tổng S có chia hết cho 2;3;5 không? Vì sao?
S= 1/2 + 1/2^2 + 1/2^3 + .......1/2^2014
a/ tính tổng S
b/ CMR: S <1
a) \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Rightarrow2S-S=1-\frac{1}{2^{2014}}\)
b) Ta có : \(S=1-\frac{1}{2^{2013}}< 1\left(ĐPCM\right)\)