giải phương trình: x2-2x+1=\(\sqrt{x^2+21}\)
anh chị nào giúp em với
giải phương trình: x2-2x+1=√x2+21x2+21
anh chị nào giúp em
Ko rõ đề bài (vì đề em ghi bị lỗi)
Nhưng nếu pt là:
\(x^2-2x+1=\sqrt{x^2+21}\)
Thì đây là 1 phương trình không giải được
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
Mấy anh chị giải hộ phương trình này giúp em với. cảm ơn
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:
\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)
+ \(\left(\sqrt{z-2018}-1\right)^2\)
= 0
Giải hệ phương trình sau:
\(\hept{\begin{cases}y^2-y(\sqrt{x-1}+1)+\sqrt{x-1}=0\\x^2+y-\sqrt{7x^2-3}=0\end{cases}}\)
Các anh chị giúp em với ạ! Em cảm ơn!
\(ĐK:x\ge1\)
Pt (1) <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)
<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)
<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)
<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)
+) Với y-1=0 <=> y=1
Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)
Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)
Ta có phương trình ẩn t:
\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)
Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)
Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)
Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)
+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)
Thế vào phương trình (2) ta có:
\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)
<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)
<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)
vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1
phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk
Với x=2 ta có: \(y=\sqrt{2-1}=1\)
Hệ có 1nghiem (2,1)
Kết luận:... (2, 1), (1,1)
Giải phương trình: x3 + (x-2)3 = (2x-2)3
Giúp em với mấy anh chị ơi
Giải các phương trình sau:
a, |x+1| + 2|x+2| = x + 3
b, |x-1| - 2|x-2| = 2x+1
c, |2-x| + |x-5| = 3x-4
d, |3x-2| + |x+3| = 2-x
Các anh chị hoặc bạn nào biết giúp em với ạ em đang cần gấp :<
Giải phương trình: x3 + (x-2)3 = (2x-2)3
Giúp em với mấy anh chị ơi
<=>x3+x3-6x2+12x-8=8x3-24x2+24x-8
<=>-6x3+18x2-12x=0
<=>-x(6x2-18x+12)=0
<=>-x(6x2-6x-12x+12)=0
<=>-x(6x-12)(x-1)=0
<=>x=0;2;1
Ta có \(x^3+\left(x-2\right)^3=\left(2x-2\right)^3\)
\(\Rightarrow x^3+\left(x-2\right)^3-\left(2x-2\right)^3=0\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=0\)
Đặt \(x=a;x-2=b;2-2x=c\)
\(a+b+c=x+x-2+2-2x=0\)
Xét bài toán phụ \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3a^2b-3ab^2\)
= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc\)
\(\Rightarrow x^3+\left(x-2\right)^3+\left(2-2x\right)^3=3x\left(x-2\right)\left(2-2x\right)=0\)
\(\Rightarrow x=0\) hoặc \(x-2=0\Rightarrow x=2\) hoặc \(2-2x=0\Rightarrow2x=2\Rightarrow x=1\)
Vậy phương trình có tập nghiệm \(S=\left\{0;2;1\right\}\)
\(x^3+\left(x-2\right)^3=\left(2x-2\right)^3\)
\(\Rightarrow\left(x+x-2\right)\left(x^2-2x+4\right)-\left(2x-2\right)^3=0\)
\(\Rightarrow\left(2x-2\right)\left[\left(x^2-2x+4\right)-\left(2x-2\right)^2\right]=0\)
\(\Rightarrow\left(2x-2\right)\left(x^2-2x+4-4x^2+8-4\right)=0\)
\(\Rightarrow\left(2x-2\right)\left(6x-3x^2\right)=0\)
=>____ 2x-2=0 => 2x=2=> x=1
|____ \(6x-3x^2=0\Rightarrow x\left(6-3x\right)=0\)
=> __ x=0
|_ 6-3x=0=> 3x=6=> x=2
vậy x=0;x=1;x=2
Giải hệ phương trình:
\(\hept{\begin{cases}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{cases}}\)
Các bạn/anh/chị/em giải giúp mình với :<
Cảm ơn trước ạ!
Sqrt {x-2}-sqrt {x+1}+sqrt {2x-5}=2x2-5x
Mọi người giải giúp em hệ phương trình này với ạ
theo kinh nghiệm lâu năm của tui thì đề là;
\(\sqrt{x-2}-\sqrt{x+1}+\sqrt{2x-5}=2x^2-5x\) nhưng sao là hệ nhỉ
\(3x^2-5\sqrt[3]{x^3+1}+8x+5=0\)
Anh chị hay bạn nào giỏi phương trình vô tỉ thì giúp mình câu này với :'( trong tầm ngày kia em phải nộp rồi