Cho hình thang ABCD , có góc B = góc D = 90
Vẽ các Tia phân giác Ax và Cy
C/m Ax // Cy
1 cho hình thang ABCD (AB//CD) có AB=AD và AC=CD. Tính các góc của hình thang (vẽ hình dùm mình)
2. cho tam giác ABC vuông tại A có góc B= 6o độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) c/m tam giác CEF đều
b)vẽ CD vuông góc với EF. c/m tứ giác ABCD là hình thang vuông.( câu này cũng vẽ hình dùm mình un)
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
Cho tam giác ABC cân tại B trên 1/2 mặt phẳng bờ AC ko chứa B vẽ tia Ax sao cho AC là tia phân giác của góc BAx.Trên tia Ax lấy D (D khác A). Cm ABCD là hình thang
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Cho hình thang ABCD ( AB // CD), biết Ax, Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dx.
Bài giải
Trong hình thang ABCD có : \(AB\text{ }//\text{ }CD\text{ }\Rightarrow\text{ }\widehat{A}\text{ và }\widehat{D}\text{ là hai góc trong cùng phía }\)
\(\Rightarrow\text{ }\widehat{A}+\widehat{D}=180^o\text{ }\Rightarrow\text{ }\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{D}=\frac{1}{2}\cdot180^o\text{ }\Rightarrow\text{ }\widehat{A_1}+\widehat{D_1}=90^o\)
Trong \(\Delta AOD\) có : \(\widehat{A_1}+\widehat{O}+\widehat{D_1}=180^o\) Mà \(\text{ }\widehat{A_1}+\widehat{D_1}=90^o\text{ }\Rightarrow\text{ }\widehat{O}=90^o\)
\(\Rightarrow\text{ }Ax\text{ }\perp\text{ }Dx\text{ ( }ĐPCM\text{ )}\)
Cho hình vẽ góc BAx = 35 độ, góc ABC = 70 độ, góc BCy = 145 độ, Bt là tia phân giác của ABC.
a) Chứng minh Ax//Bt và Bt// Cy
b) Đường thẳng Ax và đường thẳng Cy có song song với nhau không? Vì sao?
Giúp mình với!!!
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
cho tứ giác ABCD có các tia phân giác góc A và góc D vuông góc với nhau. Chứng Minh:
a) ABCD là hình thang
b) 2 tia phân giac góc D và góc C vuông góc với nhau
cho tam giác ABC vuông tại A có góc ABC = 60° kẻ tia Ax song song với BC trên Ax lấy điểm D sao cho AD =DC
A) tính số đo góc BAD và góc ĐAC
B). Chứng minh tứ giác ABCD là hình thang cân
C) gọi E là trung điểm của BC chứng minh tứ giác ADEB là hình thoi
Answer:
A) Ta có: AD // BC
\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow60^o+\widehat{BAD}=180^o\)
\(\Rightarrow\widehat{BAD}=120^o\)
\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)
\(\Rightarrow\widehat{DAC}=30^o\)
B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D
\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)
\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)
Tứ giác ABCD có:
AD // BC (giả thiết)
Hai góc kề đáy CD bằng nhau
=> ABCD là hình thang cân
C) Theo phần b): ABCD là hình thang cân
=> AB = CD mà AD = CD (giả thiết)
=> AB = AD
Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)
=> AB = BC : 2 = BE = EC
Mà ta có: AB = AD => AD = BE
Tứ giác ADEB có:
AD // BE
AD = BE
=> Nên là hình bình hành
Ta có: AD = AB => ADEB là hình thoi