Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le thi thanh tra
Xem chi tiết
Cần Cần
19 tháng 5 2017 lúc 12:26

Từ bài ra ta có.

\(x+y=\sqrt{x+6}+\sqrt[]{y+6}\) 

\(P^2=x+y+12+2.\sqrt{x+6}.\sqrt{y+6}=P+12+2.\sqrt{x+6}.\sqrt{y+6}\)

Mà \(2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+6+y+6=P+12\)

Nên \(P^2\le2P+24\Leftrightarrow P^2-2P+1\le25\)

==>\(\left(P-1\right)^2\le25\Leftrightarrow-5\le P-1\le5\)

Đến đây bạn tự giải tiếp hộ nhé. 

Có gì sai sót xin thứ lỗi. 

tth_new
24 tháng 2 2019 lúc 8:06

\(x-\sqrt{x+6}=\sqrt{y+6}-y\)

\(\Leftrightarrow P=x+y=\sqrt{x+6}+\sqrt{y+6}\)

Suy ra \(P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le x+y+12+2.\frac{x+y+12}{2}\)

\(\Leftrightarrow P^2\le2P+24\Leftrightarrow P^2-2P-24\le0\Leftrightarrow-4\le P\le6\)

tth_new
24 tháng 2 2019 lúc 8:07

Thêm ĐK: \(x,y\ge-6\)

duy dung
Xem chi tiết
Nguyễn Hoàng Đại
Xem chi tiết
Rin Huỳnh
1 tháng 9 2021 lúc 8:44

Chắc dùng Mincowski

Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Lê Tùng lâm
Xem chi tiết
Trần Anh Quân
Xem chi tiết
Nguyễn Xuân An
Xem chi tiết
hà my vũ thị
Xem chi tiết
Akai Haruma
25 tháng 10 lúc 23:34

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

Akai Haruma
25 tháng 10 lúc 23:34

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(F=\frac{x^4}{x^2\sqrt{y}}+\frac{y^4}{y^2\sqrt{x}}\geq \frac{(x^2+y^2)^2}{x^2\sqrt{y}+y^2\sqrt{x}}=\frac{4}{y^2\sqrt{x}+x^2\sqrt{y}}\)

Áp dụng BĐT Bunhiacopxky kết hợp AM-GM:

$(y^2\sqrt{x}+x^2\sqrt{y})^2\leq (y^2+x^2)(y^2x+x^2y)=2xy(x+y)$
$\leq (x^2+y^2)\sqrt{2(x^2+y^2)}=2\sqrt{2.2}=4$

$\Rightarrow y^2\sqrt{x}+x^2\sqrt{y}\leq 2$

$\Rightarrow F\geq \frac{4}{y^2\sqrt{x}+x^2\sqrt{x}}\geq \frac{4}{2}=2$
Vậy $F_{\min}=2$. Giá trị này đạt tại $x=y=1$

Trịnh Văn Đạt
Xem chi tiết