Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Anh Thư
Xem chi tiết
Aya aya
Xem chi tiết
Phong Linh
8 tháng 9 2018 lúc 6:21

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

Nguyễn Minh Quang
11 tháng 2 2021 lúc 8:28

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

Khách vãng lai đã xóa
Nguyen Tung Lam
Xem chi tiết
Dương Lam Hàng
2 tháng 4 2018 lúc 21:44

Ta có: \(S=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)

\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)

\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3S=99.100.101\)

\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

_ℛℴ✘_
2 tháng 4 2018 lúc 21:32

S=  1.2 + 2.3 +... + 99.100

=>S= \(\frac{99.100.101}{3}\)=333300

Arima Kousei
2 tháng 4 2018 lúc 21:36

   \(S=1.2+2.3+3.4+4.5+...+99.100\)

\(3S=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3S=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)

Triệu Lệ Dĩnh
Xem chi tiết
KUDO SHINICHI
7 tháng 5 2016 lúc 15:56

 S=1.2+ 2.3+4,5.......+99.100 
Nhân cả 2 vế với 3, ta được: 
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
----> S = (99.100.101):3 
 S= 333300 
Vậy A=333300 

Sakura
7 tháng 5 2016 lúc 15:50

S = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100

S = 1.100

S = 100

Phạm Hải Lâm
Xem chi tiết
phan thị thùy linh
Xem chi tiết
Kudo Shinichi
25 tháng 3 2017 lúc 18:00

3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100

3S=98.99.100

S=\(\dfrac{98.99.100}{3}\)

S=98.33.100

S=323400

Trần Mạnh Cường
13 tháng 11 2017 lúc 15:02

Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300

Đinh Thanh Hoa
Xem chi tiết
kagamine rin len
20 tháng 12 2015 lúc 13:21

S=1.2+2.3+3.4+...+99.100

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3S=99.100.101

S=(99.100.101):3=333300

Trieu Nguyen
Xem chi tiết
Muôn cảm xúc
6 tháng 5 2016 lúc 20:38

A = 1.2 + 2.3 + 3.4 + ....... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)  +.... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100

3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99  . 100 . 101

3A = 99 . 100 . 101 = 999900

A = 999900 : 3 = 333300

Phạm Nguyễn Tất Đạt
6 tháng 5 2016 lúc 20:13

A=1*2+2*3+3*4+...+99*100

A=100*101*102:3

A=343400(công thức)

 

 

Nguyen Thi Mai
6 tháng 5 2016 lúc 20:14

http://olm.vn/hoi-dap/question/96300.html

Trần Thanh Tùng
Xem chi tiết
Đinh Đức Hùng
26 tháng 1 2017 lúc 9:05

A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300