Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Minh
Xem chi tiết
Võ Ngọc Anh
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Khách vãng lai đã xóa
Quỳnh HoaThiệu Đô
Xem chi tiết
Võ Ngọc Anh
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Khách vãng lai đã xóa
khócVô lệ
Xem chi tiết
Võ Ngọc Anh
28 tháng 1 2021 lúc 22:20

Ta có:

a= n(n+1)(n+2)(n+3) + 1

= (n2 + 3n)(n2 + 3n + 2) +1

= (n2 + 3n)2+ 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì (n2 + 3n + 1)cũng là số tự nhiên, vì vậy, an là số chính phương.

Khách vãng lai đã xóa
Alice
Xem chi tiết
Trần Đức Phú
Xem chi tiết

đề thấy hơi chán,từ số kia =2an,mẫu số cx chia hết cho 2 thì sao tối giản đc hả bạn ơi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 7 2018 lúc 13:57

Hàm số  f ( x )   =   x n   +   a 1 x n - 1   +   a 2 x n - 2   +   . . .   +   a n - 1 x   +   a n   =   0  xác định trên R

- Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   + ∞ ta luôn có lim f ( x n )   =   + ∞

Do đó, f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n )   >   1 kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho f(a) > 1 (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số ( x n ) bất kì mà x n   →   − ∞ ta luôn có lim f ( x n )   =   − ∞ hay l i m [ − f ( x n ) ]   =   + ∞

Do đó, − f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì − f ( x n )   >   1 kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho −f(b) > 1 hay f(b) < −1 (2)

- Từ (1) và (2) suy ra f(a).f(b) < 0

Mặt khác, f(x) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình f(x) = 0 luôn có nghiệm.

Nguễn Hoàng Dương
Xem chi tiết
HOA LE
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết
Trần Thu Ha
Xem chi tiết