tìm hai số hữu tỉ x và y sao cho x- y = x.y= x:y (y#0)
tìm hai số hữu tỉ x và y sao cho x-y=x.y=x:y(y#0)
x-y=x.y
=>x=x.y+y=y.(x+1)
=>x/y=x+1 (1)
Mà x-y=x/y (gt)
=>x-y=x+1
=>-y=1
=>y=-1
Thay y=-1 vào x-y=x.y
=>x-(-1)=x.(-1)
=>x+1=-x
=>2x=-1=>x=-1/2
Vậy x=-1/2;y=-1
tìm hai số hữu tỉ x và y(y khác 0) sao cho x+y=x.y=x:y
xy=x:y
=>y2=x:x=1
=>y=1 hoặc y=-1
*)y=1 =>x+1=x(vô lí)
*)y=-1 =>x-1=-x
=>x=1/2
Vậy y=-1 x=1/2
ta có x + y =xy => x = xy - y => x = y(x-1)
Ta lại có x + y = x / y thay x = y(x-1) vào vế phải :
x+ y = \(\frac{y\left(x-1\right)}{y}=x-1\)
=> x + y = x- 1 => y = -1
ta có x + y = xy
thay y = -1 vào ta có:
x + - 1 = -1 .x => x - 1 = -x => 2x = -1 => x = -1/2
VẬy y = -1 ; x = -1/2
đua phía dưới chuyển về đối đầu ngũ người vô đối
Tìm hai số hữu tỉ x và y sao cho x+y=x.y=x:y với y khác 0
xy=x:y
\(\Rightarrow y^2=x:x=1\)
\(\Rightarrow y=1\) hoặc \(y=-1\)
\(y=1\Rightarrow x+1=x\)( vô lí)
\(y=-1\Rightarrow x-1=-x\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\), \(y=-1\)
tíc mình nha
\(x+y=x.y=\frac{x}{y}\)(1)
Nhân 3 vế với y
\(y\left(x+y\right)=x.y^2=x\)
Vậy:
\(x.y^2=x\)
Chia hai vế cho x:
\(y^2=1\Rightarrow y=1\)(2)
Thế (2) vào (1)
\(x+1=x.1=\frac{x}{1}\)
\(\Leftrightarrow x+1=x=x\)
\(\Leftrightarrow x-x=-1\Leftrightarrow0=\left(-1\right)\text{(Vô lý)}\)
Vậy không thể tìm được x và y
Tìm hai số hữu tỉ x,y sao cho:
a) x-y=2(x+y) = x:y
b) x+y = x.y =x:y
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
Tìm các số hữu tỉ x và y sao cho x - y = x.y=x:y
Dễ thấy rằng y khác 0 (để cho x : y là số xác định)
Hơn nữa x khác 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y khác 0 (vì y khác 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
Tìm số hữu tỉ x và y sao cho x+y=x.y=x:y
tìm 2 số hữu tỉ x và y sao cho x-y =x.y = x:y (ykhac 0)
x-y=x.y =>x=x.y+y=y(x+1)
=> x:y=y(x+1):y=x+1
Ta có: x:y=x-y => x+1=x-y => y=-1
Thay y=-1 vào x-y=xy ta được x-(-1)=x(-1)
=>2x=-1 =>x=-1/2
Vậy y=-1 và x=-1/2
Điều kiện : \(y\ne0\)để x:y có nghĩa.
Từ: \(x\cdot y=\frac{x}{y}\)(1)
Nếu x = 0 thì 0 - y = 0 => y = 0 trái với điều kiện. LoạiVới \(x\ne0\)thì (1) \(\Leftrightarrow y=\frac{1}{y}\Leftrightarrow y^2=1\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)Với y = 1 thì: x-1=x. Vô lý. LoạiVới y = -1 thì x+1=-x => x=-1/2Vậy chỉ 1 tồn tại cặp số hữu tỷ (x=-1/2;y=-1) thỏa mãn đề bài.
Tìm 2 số hữu tỉ x và y sao cho : x-y=x.y=x:y(y khác 0)
xy=x:y
=>y.y=x:x
=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x(vô lí)
*)y=-1
=>x-1=-x
<=>2x=1
<=->x=1/2
Vậy y=-1 x=1/2
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a/ x.(x-1/3)<0
mà x > x-1/3
=> x>0 ; x-1/3 < 0
=> x>0 ; x<1/3
=> 0<x<1/3, x thuộc Q
chọn ba số x là : 1/4 ; 1/5; 1/6
b/
x+y = x.y= x:y
x+y = x.y
=> x= x.y-y = y.[x-1]
=> x:y= x-1 [1]
=> x+y = x:y = x-1
=> y= -1 thay vào [1]
=> x: [-1] = x-1
=> -x = x-1
=> 2x = 1
=> x= 1/2
Vậy x= 1/2 ; y= -1
a)x(x-1/3)<0
Do x>x-1/3
=>x>0 x-1/3<0
<=>0<x<1/3
=>0<x<4/12
=>x={1/12;2/12;3/12;...}
Bạn bảo tìm 3 số nên mk tìm nấy chứ có vô số x
b)xy=x:y
=>y.y=x:x=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
<=>x-x=1
<=>0=1(L)
*)y=-1
=>x-1=-x
<=>x+x=1
<=>2x=1
<=>x=1/2
Vậy y=-1 x=1/2