Tìm x :
(2x+1) (-2x+1) + \(^{\left(1-2x\right)^2}\)=18
tìm x biết \(\left(2x+1\right)\cdot\left(x+1\right)^2\cdot\left(2x+3\right)=18\)
Tìm x
a)\(3x\left(2x+1\right)=5\left(2x+1\right)\)
b)\(\left(3x-8\right)^2=\left(2x-7\right)^2\)
c)\(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)
d)\(\left(9x^2-16\right)^2-4\left(3x+4\right)^2\)
e)\(\left(2x-1\right)\left(4x^2+2x+1\right)=x\left(x-8\right)\)
a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)
\(3x=5\)
\(x=\frac{5}{3}\)
b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)
\(3x-8=2x-7\)
\(x=1\)
c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)
\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)
\(4x^2-3x-18=4x^2+3x\)
\(6x=-18\)
\(x=-3\)
d) Sai đề
e) ko bt
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
Tìm x
a, \(\dfrac{\left(x+2\right)^2}{2}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) + \(\dfrac{\left(1-2x\right)^2}{8}\) – (1 + x)2 = 0
b, \(\dfrac{\left(x+1\right)^2}{2}\) - \(\dfrac{\left(1-2x\right)^2}{3}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) - \(\dfrac{\left(5-x\right)^2}{6}\)= 0
c, (3 + x)3 – 3x2(x + 4) + (x + 2)3 = (1 – x)3 – 8
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
c.
PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$
$\Leftrightarrow 42x+42=0$
$\Leftrightarrow x=-1$
1.Tìm x , biết :
a ) \(2x\left(x-3\right)-x\left(2x+3\right)=18\)
b ) \(x\left(5x^2-2\right)+5x\left(1-x^2\right)=3^4\)
a) 2x2 - 6x - 2x2 - 3x = 18
-9x = 18
x = -2
b) 5x3 - 2x + 5x - 5x3 = 34
3x = 81
x = 27
a,\(2x\left(x-3\right)-x\left(2x+3\right)=18\)
\(\Leftrightarrow2x^2-6x-2x^2-3x=18\)
\(\Leftrightarrow-9x=18\)
\(\Leftrightarrow x=-2\)
Tập nghiệm của pt đã cho là {-2}
\(\Leftrightarrow x\left(5x^2-2\right)+5x\left(1-x^2\right)=3^4\)
\(\Leftrightarrow5x^3-2x+5x-5x^3=81\)
<=>3x=81
<=>x=27
Tập nghiệm của pt đã cho là {27}
a) \(2x\left(x-3\right)-\left(2x+3\right)=18\)
\(\Leftrightarrow2x^2-6x-2x^2-3x=18\)
\(\Leftrightarrow-9x=18\)
\(\Leftrightarrow x=-2\)
b) \(x\left(5x^2-2\right)+5x\left(1-x^2\right)=3^4\)
\(\Leftrightarrow5x^3-2x+5x-5x^3=3^4\)
\(\Leftrightarrow3x=3^4\)
\(\Leftrightarrow x=3^3\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm giá trị của k sao cho phương trình
a) \(\left(2x+1\right)^2\)(9x+2k) - 5(x+2)=40 có nghiệm là x=2
b) 2(2x-1)+18=9(x+2)(2x+k) có nghiệm là x=1
a) Để phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\) có nghiệm là x=2 thì Thay x=2 vào phương trình \(\left(2x+1\right)^2\cdot\left(9x+2k\right)-5\left(x+2\right)=40\), ta được:
\(\left(2\cdot2+1\right)^2\cdot\left(9\cdot2+2k\right)-5\left(2+2\right)=40\)
\(\Leftrightarrow25\cdot\left(2k+18\right)-20=40\)
\(\Leftrightarrow25\left(2k+18\right)=60\)
\(\Leftrightarrow2k+18=\dfrac{12}{5}\)
\(\Leftrightarrow2k=-\dfrac{78}{5}\)
hay \(k=\dfrac{-39}{5}\)
Vậy: \(k=\dfrac{-39}{5}\)
(9x+2k) - 5(x+2)=40 có nghiệm là x=2
=>(2*2+1)2(9*2+2k)-5(2+2)=40
=>25(18+5k)-20=40
=>25(18+5k)=60
=>18+5k=2.4
=>5k=-15.6 =>k=-0.624
b) 2(2x-1)+18=9(x+2)(2x+k) có nghiệm là x=1
=>2(2*1-1)+18=9(1+2)(2*1+k)
=>2+18=27(2+k)
=>2+k=20/27
=>k=-34/27