Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
layla Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 7 2021 lúc 23:33

5C (công thức trong SGK, ko có gì cần tự luận ở đây)

6C: \(cos\left(a+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(a+\dfrac{\pi}{2}\right)\right]=sin\left(-a\right)=-sina\)

7A: lý thuyết SGK, pt đường tròn có dạng \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

8A

Viết lại mẫu theo thứ tự và loại đi các mẫu lặp:

151  152  153  154  155  160  162  163  165  166  167

Từ đây ta thấy số trung vị là 160

9B: công thức định lý hàm cos trong SGK

10B (bấm máy)

11B (lý thuyết elip SGK)

12B (công thức lượng giác SGK)

13C.

Từ pt (E) ta thấy \(\left\{{}\begin{matrix}a^2=25\\b^2=24\end{matrix}\right.\) \(\Rightarrow c^2=a^2-b^2=1\Rightarrow c=1\)

Tiêu cự \(=2c=2\)

14D

\(\overline{t}=\dfrac{25+27+27+28+29+30+30+30+28+26+27+27}{12}\approx27,8\)

15D

\(\Leftrightarrow x^2+y^2-2x+\dfrac{5}{2}y-\dfrac{1}{2}=0\)

\(\Rightarrow I\left(1;-\dfrac{5}{4}\right)\)

16D (công thức SGK)

 

layla Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 20:22

3.

Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)

\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)

\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)

\(=\dfrac{sin3x}{cos3x}=tan3x\)

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 20:29

4.

a.

\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)

Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

b.

Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)

\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)

Pt đường tròn có dạng:

\(\left(x-1\right)^2+\left(y-2\right)^2=4\) 

30. Bảo Trâm
Xem chi tiết

BÀI 3:

loading...

bài 4:

loading...

Là mấy bài này em làm được bài nào chưa?

layla Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:42

c.

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1>0\\\left(2x+1\right)^2>\left(x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\x^2>1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

d.

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\2-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\ge0\\x>\left(2-x\right)^2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2-5x+4< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\\left\{{}\begin{matrix}x\le2\\1< x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\1< x\le2\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:43

2.

Do \(a\in\left(\dfrac{\pi}{2};\pi\right)\Rightarrow sina>0\)

\(\Rightarrow sina=\sqrt{1-cos^2a}=\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

Nguyễn Anh Đức
Xem chi tiết
Trần Đức Anh
6 tháng 9 2021 lúc 20:22

https://lazi.vn/edu/exercise/viet-doan-van-nghi-luan-khoang-12-cau-trinh-bay-suy-nghi-cua-em-ve-suc-lan-toa-cua-nhung-dieu

H/t

Khách vãng lai đã xóa
Ngọc Minh
Xem chi tiết
Lê Song Phương
1 tháng 11 2021 lúc 17:34

Câu 20:

Ta có:  \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)

\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)

Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)

Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)

Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 11 2021 lúc 17:45

Câu 29: Ta có: 

\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có 

\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)

Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)

Khách vãng lai đã xóa
Nguyễn Hoàng Ngọc Linh
Xem chi tiết
Trần Đức Huy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:33

Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?

Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)

Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)

Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)

Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)

Tam giác vuông \(IJO\)\(IJ^2=OI^2-JO^2\)

\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)

Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)

Do O là trung điểm BC nên \(IO\perp BC\)

\(\Rightarrow OI^2+OC^2=IC^2\) 

Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)

Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)

\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)

Thế vào (3):

\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)

Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:14

Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c

oki pạn
7 tháng 2 2022 lúc 12:34

câu C.

Do Tâm đường tròn ngoại tiếp tam giác thuộc đường thẳng đó nên gọi tâm đó là I 

=> I là giao điểm của đường thẳng qua M vuông góc AO, và trung trực của BC

Gọi điểm N là giao điểm cả AO và BM

=> tam giác AMO vuông tại M, MN vuông góc AO => \(AM^2\) = AN.AO

AK cắt BM tại G => AN.AO = AG.AK

Chứng minh tứ giác nội tiếp và tam giác đồng dạng  => AG.AK = 2.BN.BI = 2\(BO^2\)

=> \(AM^2=2BO^2=2BC\)

⇒ BC=\(\sqrt{2}\) AM(đpcm) 

 

Ling ling 2k7
Xem chi tiết