Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Đức Huy

Cần gấp nha giúp giùm mik với, đừng làm quá tắt hum hỉu CẦN CÂU C THÔI

undefined

Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:33

Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?

Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)

Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)

Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)

Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)

Tam giác vuông \(IJO\)\(IJ^2=OI^2-JO^2\)

\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)

Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)

Do O là trung điểm BC nên \(IO\perp BC\)

\(\Rightarrow OI^2+OC^2=IC^2\) 

Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)

Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)

\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)

Thế vào (3):

\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)

Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:14

Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c

oki pạn
7 tháng 2 2022 lúc 12:34

câu C.

Do Tâm đường tròn ngoại tiếp tam giác thuộc đường thẳng đó nên gọi tâm đó là I 

=> I là giao điểm của đường thẳng qua M vuông góc AO, và trung trực của BC

Gọi điểm N là giao điểm cả AO và BM

=> tam giác AMO vuông tại M, MN vuông góc AO => \(AM^2\) = AN.AO

AK cắt BM tại G => AN.AO = AG.AK

Chứng minh tứ giác nội tiếp và tam giác đồng dạng  => AG.AK = 2.BN.BI = 2\(BO^2\)

=> \(AM^2=2BO^2=2BC\)

⇒ BC=\(\sqrt{2}\) AM(đpcm) 

 


Các câu hỏi tương tự
Mai Anh Hoàng
Xem chi tiết
Trần Đức Huy
Xem chi tiết
30. Bảo Trâm
Xem chi tiết
Thùy Linh Bùi
Xem chi tiết
tranthuylinh
Xem chi tiết
AMD Ryzen 9-5900XS
Xem chi tiết
bach
Xem chi tiết
Min Gấu
Xem chi tiết
tranthuylinh
Xem chi tiết