Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?
Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)
Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)
Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)
Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)
Tam giác vuông \(IJO\): \(IJ^2=OI^2-JO^2\)
\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)
Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)
Do O là trung điểm BC nên \(IO\perp BC\)
\(\Rightarrow OI^2+OC^2=IC^2\)
Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)
Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)
\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)
Thế vào (3):
\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)
Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c
câu C.
Do Tâm đường tròn ngoại tiếp tam giác thuộc đường thẳng đó nên gọi tâm đó là I
=> I là giao điểm của đường thẳng qua M vuông góc AO, và trung trực của BC
Gọi điểm N là giao điểm cả AO và BM
=> tam giác AMO vuông tại M, MN vuông góc AO => \(AM^2\) = AN.AO
AK cắt BM tại G => AN.AO = AG.AK
Chứng minh tứ giác nội tiếp và tam giác đồng dạng => AG.AK = 2.BN.BI = 2\(BO^2\)
=> \(AM^2=2BO^2=2BC\)
⇒ BC=\(\sqrt{2}\) AM(đpcm)