Cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác ABC 2 tam giác đều ABM và ACN a) Tính góc MBC b)Kẻ AI vuông góc BC.CM:IA=IB=IC c)CM:IM=IN
cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác đều ABM và ACN.
a)tính góc MBC
b)kẻ AI vuông góc với BC chứng minh MI =NI
cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài các tam giác đều ABM và ACN.
a) tính góc MBC
b)kẻ AI vuông góc với BC .Chứng minh MI=NI
ta có
góc MBA=60 ( tam giác BMA đều)
góc ABC =45 ( tam giác ABC vuông cân tại A)
-> góc MBA+góc ABC =60+45
-> góc MBC=105
b)Xét tam giác ABC vuong cân tại A ta có
AI là duong cao ( AI vuông góc BC)
-> AI là phân giác
-> góc BAI = góc IAC
ta có
góc MAB= góc NAC (=60)
góc BAI= góc IAC (cmt)
-> góc MAB+ góc BAI = góc NAC + góc IAC
-> góc MAI = góc IAN
ta có
AM=AB (( tam giác MBA deu)
AB=AC ( tam giác ABC vuông cân tại A)
AC= AN ( tam giác ANC đều)
=> AM=AN
Xét tam giác MAI và tam giác NAI ta có
AM=AN (cmt)
AI=AI (cc)
góc MAI= góc NAI (cmt)
-> tam giác MAI = tam giác NAI (cgc)
-> MI = NI
1)Cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác ABC 2 tam giác đều ABM và ACN
a) Tính góc MBC
b)Kẻ AI vuông góc BC.Chứng Minh :IA=IB=IC
c)Chứng Minh :IM=IN
a, Vì △ABC vuông cân tại A => AB = AC (1) và ^ABC = ^ACB = 45o
Vì △ABM đều => AB = AM = BM (2) và ^ABM = ^BAM = ^BMA = 60o
Vì △ACN đều => AC = CN = AN (3) và ^ACN = ^CAN = ^CNA = 60o
Ta có: ^MBC = ^MBA + ^ABC = 60o + 45o = 105o
b, Xét △AIC vuông tại I và △AIB vuông tại I
Có: AC = AB (cmt)
AI là cạnh chung
=> △AIC = △AIB (ch-cgv)
=> IC = IB (2 cạnh tương ứng)
=> AI là trung tuyến của △ABC vuông cân tại A
=> IA = IC = IB = (1/2) . BC
c, Từ (1) ; (2) ; (3) => BM = CN
Ta có: ^NCI = ^NCA + ^ACI = 60o + 45o = 105o
Xét △NCI và △MBI
Có: NC = MB (cmt)
NCI = MBI (= 105o)
IC = IB (cmt)
=> △NCI = △MBI (c.g.c)
=> IN = IM (2 cạnh tương ứng)
1)Cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác ABC hai tam giác đều ABM và ACN
a) Tính góc MBC
b)Kẽ AI vuông góc BC.CM:IA=IB=IC
c)CM:IM=IN
2)Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC
a)CM: góc BAH = góc HAC
b)Biết AB=20cm;AH=6 cm.Tính BC
1)Cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác ABC 2 tam giác đều ABM và ACN
a) Tính góc MBC
b)Kẻ AI vuông góc BC.CM:IA=IB=IC
c)CM:IM=IN
cho tam giác đều ABC . Vẽ ra phía ngoài tam giác vuông cân ABM va ACN ( can tai B và C )
a ) ting góc MAN
b) cm MC+NB
c) tam giác AMN cân tại A
Cho tam giác ABC đều, vẽ tam giác ABM vuống cân ở B, tam giác ACN vuông cân ở C ra phía ngoài tam giác ABC. CMR: MN//BC
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác cân ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. Cho MB = 3cm,, BC = 2cm, CN = 4cm. Tính MN.
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác cân ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. Cho MB = 3cm,, BC = 2cm, CN = 4cm. Tính MN.
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
B1: Cho tam giác ABC có góc A nhọn. Vẽ ra phía ngoài các tam giác ABM và ACN vuông cân tại A. BN cắt MC tại D. Chứng minh DA la tia phân giác góc MDN.