Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0; d>0)
Chứng minh rằng: \(\frac{a}{b}\)<\(\frac{c}{d}\)thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm
d) 0 là số hữu tỉ dương
Bài 2: Cho 2 số hữu tỉ a/b và c/d với b,d>0
Chứng minh: Nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Vận dụng: Viết 2 số xen giữa 2 số hữu tỉ -1/5 và 1/5
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
1. Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)với b > 0, d > 0. Chứng tỏ rằng nếu \(\frac{a}{b}< \frac{c}{d}\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2. Cho \(a,b,n\in Z\)và b > 0, n > 0
Hãy so sánh 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+n}{b+n}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
B1 Chứng minh rằng
a)cho a,b,c=0 và a;b;c khác 0
Cmt \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(\right)\)/\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)/
b) cho a=b+c và a;b;c là các số hữu tỉ khác 0
Cmr\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}+\)là 1 số hữu tỉ
c) cho a;b;c là các số hữu tỉ khác 0
Cmr √1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2 là 1 số hữu tỉ (dấu căn kéo dài hết ạ
d) cho a;b;c là 3 số hữu tỉ Tm ab-ba+ca=1
Cmr A= √(a^2+1)(b^2+1)(c^2+1) là 1 số hữu tỉ (dấu căn kéo dài hết ạ)
Giúp mình với !!
Lời giải:
Bạn chú ý lần sau gõ đề bài bằng công thức toán. Việc gõ đề thiếu/ sai/ không đúng công thức khiến người sửa rất mệt.
a) Theo hằng đẳng thức đáng nhớ:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)}\)
\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2(a+b+c)}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-0}\) (do $a+b+c=0$)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
b) Theo điều kiện đề bài:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2}{b^2c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2+2bc}{b^2c^2}-\frac{2}{bc}}\)
\(=\sqrt{\frac{1}{(b+c)^2}+(\frac{b+c}{bc})^2-\frac{2}{bc}}=\sqrt{(\frac{1}{b+c}-\frac{b+c}{bc})^2}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\)
Vì \(a,b,c\in\mathbb{Q}\Rightarrow \)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\in\mathbb{Q}\)
Ta có đpcm.
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
CMR :\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)
\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)
\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\) (vì: a=b+c)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)
Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\) là 1 số hữu tỉ
=.= hok tốt!!
Cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(a,b,c,d thuộc Z ; b khác 0 ; d khác 0). Chứng tỏ rằng: Nếu \(\frac{a}{b}\) < \(\frac{c}{d}\) thì \(\frac{a}{b}\) <\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
( Sử dụng: Cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)[a,b,c,d thuộc Z ; b khác 0; d khác 0] ta có: \(\frac{a}{b}\) >\(\frac{c}{d}\)<=> ad>bc
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
Chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)
\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)
Do a,b,c là các số hữu tỉ => đpcm
Ta có
\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2. + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)
\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)+ \(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)
Từ đó suy ra
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ
=> đpcm
Cho a, b, c là các số hữu tỉ khác 0 và a = b + c.
C/m: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là một số hữu tỉ.
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
cho \(\frac{a}{b}>\frac{c}{d}\left(b>0,d>0\right)\)chứng minh rằng \(\frac{c}{d}< \frac{c+a}{d+b}< \frac{a}{b}\). Từ đó suy ra giữa 2 số hữu tỉ x>y bao giờ cũng có vô số số hữu tỉ.
HELP ME~~~, trả lời nhanh mk tick
cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)(a,b,c,c ∈ Z,b>0,d>0). chứng minh ad <bc khi và chỉ khi \(\frac{a}{b}< \frac{c}{d}\)
\(\frac{a}{b}\)<\(\frac{c}{d}\)
=> \(\frac{ad}{bd}\)<\(\frac{bc}{bd}\)(tích chéo)
=> ad<bc(điều phải chứng minh)
t.i.c.k cho a nha
a) ta có \(\frac{a}{b}=\frac{ad}{bd}\)cả tử và mẫu với d >0
\(\frac{c}{d}=\frac{cb}{bd}\)cả tử và mẫu với b >0
vì \(\frac{a}{b}< \frac{c}{d}\)nên \(\frac{ab}{bd}< bc,db\Rightarrow ad< bc\)vì tích bd >0
Bài giải
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\text{ }\frac{ad}{bd}< \frac{cb}{bd}\)
\(\Rightarrow\text{ }ad< cd\text{ ( ĐPCM )}\)
cho 2 số hữu tỉ \(\frac{a}{b}\)và\(\frac{c}{d}\) với b>0, d>0.
chứng tỏ \(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\).
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)
Có \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)
Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)