Cho đường thẳng (d) có phương trình y =(2m-1)x-4m+5
a) Tìm m để (d) đi qua điểm M(-3; 1).
b) Chứng minh với mọi m đường thẳng (d) luôn đi qua 1 điểm cố định. Tìm tọa độ điểm đó.
cho đường thẳng (d) có phương trình y=(2m-1)x-4m+5
a) Tìm m để (d) đi qua điểm M(-3; 1).
b) Chứng minh với mọi m đường thẳng (d) luôn đi qua 1 điểm cố định. Tìm tọa độ điểm đó.
a.
Để d đi qua M \(\Rightarrow\) tọa độ M thỏa mãn pt d
\(\Rightarrow1=-3\left(2m-1\right)-4m+5\)
\(\Rightarrow m=\dfrac{7}{10}\)
b.
Giả sử tọa độ điểm cố định là \(A\left(x_0;y_0\right)\Rightarrow\) với mọi m ta luôn có:
\(y_0=\left(2m-1\right)x_0-4m+5\)
\(\Leftrightarrow2m\left(x_0-2\right)-\left(x_0+y_0-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0+y_0-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=3\end{matrix}\right.\)
Vậy với mọi m thì d luôn đi qua điểm cố định có tọa độ \(\left(2;3\right)\)
Xét các đường thẳng d có phương trình: (2m+3)x + (m+5)y + ( 4m-1) = 0 ( m là tham số). Tìm điểm cố định mà mọi đường thẳng d đều đi qua
Giả sử (d) đi qua điểm cố định \(M\left(x_0;y_0\right)\) . Khi đó :
\(\left(2m+3\right)x_0+\left(m+5\right)y_0+\left(4m-1\right)=0\)
\(\Leftrightarrow2mx_0+3x_0+my_0+5y_0+4m-1=0\)
\(\Leftrightarrow m\left(2x_0+y_0+4\right)+\left(3x_0+5y_0-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x_0+y_0+4=0\\3x_0+5y_0-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-3\\y_0=2\end{cases}}\)
Vậy (d) luôn đi qua điểm cố định \(M\left(-3;2\right)\)
bài 1: a) Tìm m để đường thẳng (d) có phương trình y=5x-3m+1 đi qua điểm A(1;-3)
b) Tìm phương trìn đường thẳng (d1) song song vs (d2) có phương trình y=3x-2 và căt trục hoành tại điểm có hoành độ =2
bài 2: Tìm m để đường thẳng y=(2m-5)x-5m đi qua diểm thuộc đường thẳng y=x+5 có tung độ =2
a, Vì A(1;-3) năm trên đường thẳng (d) khi tọa độ điểm B thỏa mãn phương trình đường thẳng (d)
Thay x = 1 ; y = -3 vào (d) phương trình tương đương
\(-3=5-3m+1\Leftrightarrow4-3x=-3\Leftrightarrow-3x=-7\Leftrightarrow x=\frac{7}{3}\)
b ; c thiếu đề
Bài 2 :
Vì y = x + 5 có tung độ là 2
=> y = 2 + 5 = 7
Vậy y = ( 2m - 5 )x - 5m đi qua đường thẳng y = x + 5 A( 2 ; 7 )
Thay x = 2 ; y = 7 vào y = ( 2m - 5 )x - 5m ta được :
\(7=\left(2m-5\right)2-5m\Leftrightarrow4m-10-5m=7\Leftrightarrow-m=17\Leftrightarrow m=-17\)
cho đường thẳng d có phương trình :(2m+3)+(m+5)+(4m-1) =0( m là tham số).
a) Vẽ đồ thị đường thẳng d khi m=-1 ,
b) tìm điểm cố định mà d luôn đi qua khi m thay đổi
Đề sai rồi bn
Không có phương trình đường thẳng nào có phương trình là :
\(\left(2m+3\right)+\left(m+5\right)+\left(4m-1\right)=0\) cả , thiếu \(y\) và cả biến số \(x\)
_Minh ngụy _
1. Lập phương trình đường thẳng (d) biết (d)
a) Đi qua A(-3;2) và tạo với tia Ox một góc 45⁰
b) Đi qua B(3;2) và tạo với tia Ox một góc 60⁰
2. Tìm điểm cố định của đường thẳng
a) y=mx+3m-2
b) y=(m+1)x-2m+1
c) y=(2m+3)x-4m+2
3. Tìm m để các hàm số sau nghịch biến trên R
a) y=(m²-1)x+2m-5
b) y=(-m²-4)x+m-3
c) y=(-m²+9)x+m²+1
Cho đường thẳng d có phương trình (2m – 4)x + (m – 1)y = m – 5. Tìm các giá trị của tham số m để d đi qua gốc tọa độ.
A. m = 2
B. m = 1
C. m = 5
D. m ≠ 5
Gốc tọa độ O (0; 0)
Để d đi qua gốc tọa độ thì tọa độ điểm O thỏa mãn phương trình
(2m – 4)x + (m – 1)y = m – 5 hay (2m – 4).0 + (m – 1).0 = m – 5 ⇔ m = 5
Vậy m = 5
Đáp án: C
a/ Xác định phương trình đường thẳng (d) đi qua hai điểm A(2; 2) và B(1; 5)
b/ Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (ẩn x). Tìm m để phương trình có
hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện:
2 2
1 2 x x 7
a: Theo đề, ta có hệ:
2a+b=2 và a+b=5
=>a=-3 và b=8
Cho phương trình ( m-1)x + (2m-2)y= m+3
a, Tìm m để tập nghiệm của phương trình đã cho là đường thẳng
song song với đường thẳng d : 3x-2y=1
song song với đường thẳng d1: y= 3x+1
đồng qui với d và d1
b, Tìm điểm cố định mà tập nghiệm đi qua với mọi m
Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)
a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)
Còn lại tương tự.
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)
Để N là điểm cố định thỏa mãn thì
\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.
Vậy không có điểm cố định.
Cho đường thẳng y = (1-4m)x + m - 2 (d)
a. Tìm m để (d) đi qua gốc tọa độ
b. Tìm m để (d) cắt trục tung tại điểm có trung độ là 1/3
c. Tìm m để (d) đi qua A(2;-3)
a. d qua gốc tọa độ khi:
\(m-2=0\Rightarrow m=2\)
b. d cắt trục tung tại điểm có tung độ là 1/3 khi:
\(m-2=\dfrac{1}{3}\Rightarrow m=\dfrac{7}{3}\)
c. d qua A khi:
\(2\left(1-4m\right)+m-2=-3\)
\(\Rightarrow m=\dfrac{3}{7}\)