Cho tam giác ABC có đường cao AH.Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F. C/M tam giác AFE đồng dạng vs tam giác ABC. Mik đang cần gấp trc 2h hôm nay
Cho tam giác ABC vuông tại A có: AB=6,AC=8, đường cao AH.
a, Tính BC, AH
b, Kẻ HE vuông góc vs AB tại E, HF vuông góc vs AC tại F.
CM: tam/g AEH đồng dạng tam/g AHB
c,CM: AH^2=AF.AC
d, tam/g ABC đồng dạng tam/g AFE
e, Diện tích tứ giác BCFE?
g, Tia phân giác của góc BAC cắt EF, BC
lần lượt tại I và K
CM:KB.IE=KC.IF
cho tam giác góc nhọn ABC, kẻ đường cao AH.Từ H kẻ HE vuông góc với AB(E thuộc AB),kẻ HF vuông goc AC(F thuộc AC) a)chứng minh rằng AE.AB=AF.AC b) chứng minh tam giác afe đồng dạng tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F a, giải tam giác ABC biết AB = 5cm, AC =12cm b, CM: tam giác AEF đồng dạng tam giác ACB c, CM: BE = BCsin^3C
cho tam giác ABC vuông tại A,kẻ đường cao AH.kẻ HD vuông góc với Ab tại D và kẻ HE vuông góc với Ac tại E.chứng minh tam giác ABC đồng dạng tam giác AEd
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH
a) chứng minh tam giác BAC đồng dạng với tam giác BHA
b) chứng minh BC . CH = AC2
c) kẻ HE vuông góc với AB, HF vuông góc với AC. chứng minh tam giác AFE đồng dạng với tam giác ABC
d) đường thẳng EF cắt BC tại M. chứng minh MB.MC=ME.MF
Cho tam giác abc vuông tại a, đường cao ah. Kẻ he vuông góc với ab tại e, hf vuông góc ac tại f
A) cho bh =3cm,ah=4cm.tính ae,be
B) chứng minh:tam giác abc đồng dạng tam giác afe
C) chứng minh :bc^2=3ah^2+be^2+cf^2
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Tính BC và AH
b) Kẻ HE vuông góc AB tại E, HF vuông góc AC tại F. Chứng minh tam giác AEH đồng dạng tam giác AHB
c) Chứng minh AH^2 = AF.AC
d) Chứng minh tam giác ABC đồng dạng AFE
e) Tia phân giác BAC cắt EF, BC lần lượt tại I và K. Chứng minh KB.IE = KC.IF
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)
Cho tam giác ABC vuông tại A. Đường cao AH.kẻ HD vuông góc với AB tại D ,kẻ HE vuông góc với AC tại E a, C/m tứ giác ADHE là hình chữ nhật b, C/m AH=DE ? c, tam giác ABC cần có điều kiện gì thì tứ giác ADHE là hình vuông Viết GT, KL
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: Vì ADHE là hình chữ nhật
nên AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
mà AH vuông góc vơi BC
nên ΔABC cân tại A
=>AB=AC
Cho tam giác ABC vuông tại A;AB=3cm; AC=4cm đường cao AH.kẻ HE vuông góc (E thuộc AB),HF vuông góc với AV (F thuộc AC)
a)Chứng minh EF=AH
b)Tính diện tích tam giác ABC và độ dài đoạn thẳng AH
c) Goih M,N theo thứ tự là trung điểm của HB.Tứ giác MNFE là hình gì?Vì sao?
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
S=1/2*3*4=6(cm2)