Tính S=(-1/7)^0 + (-1/7)^1 + (-1/7)^2 +...+ (-1/7)^27
tính tổng S=(-1/7)^0+(-1/7)^1+(-1/7)^2+......+(-1/7)^2014
Ta có: \(S=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2014}\)
\(\Leftrightarrow\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+\left(-\dfrac{1}{7}\right)^3+...+\left(-\dfrac{1}{7}\right)^{2015}\)
\(\Leftrightarrow S-\dfrac{-1}{7}\cdot S=\left(-\dfrac{1}{7}\right)^0-\left(-\dfrac{1}{7}\right)^{2015}\)
\(\Leftrightarrow\dfrac{8}{7}\cdot S=1+\dfrac{1}{7^{2015}}\)
\(\Leftrightarrow S=\left(1+\dfrac{1}{7^{2015}}\right):\dfrac{8}{7}=\dfrac{\left(1+\dfrac{1}{7^{2015}}\right)\cdot7}{8}\)
tính tổng S= (-1/7)^0+(-1/7)^1+(-1/7)^2+...+(-1/7)^2016
Ta có : A= x^0+ x^1+ x^2+...+x^n => \(A=\frac{x^{n+1}-1}{x-1}\)
Chứng minh: xA=x1+x2+...+x^n+1
xA-A=A(x-1)=xn+1-x0=xn+1-1
Từ đó => điều trên
Vậy Ta có:
\(S=\frac{\left(-\frac{1}{7}\right)^{2017}-1}{-\frac{1}{7}-1}\)
tính tổng s=(-1/70)^0+(-1/7)^1+(-1/7)^2+...+(-1/7)^2016
Tính tổng
S= (-1/7)^0 + (-1/7)^1+ (-1/7)^2+........+(-1/7)^2014
S= (-1/7)^0+(-1/7)^1+...+(-1/7)^2017
tính S
\(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\)
\(-\frac{1}{7}S=\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\)
\(S-\left(-\frac{1}{7}S\right)=\left[\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\right]-\left[\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2018}\right]\)
\(S+\frac{1}{7}S=\left(-\frac{1}{7}\right)^0-\left(-\frac{1}{7}\right)^{2018}\)
\(\frac{8}{7}S=1+\left(\frac{1}{7}\right)^{2018}\)
\(S=\frac{1+\frac{1}{7^{2018}}}{\frac{8}{7}}=\frac{\left(1+\frac{1}{7^{2018}}\right).7}{8}\)
tính tổng S=(-1/7)^0+(-1/7)^1+....+(-1/7)^2007
tính tổng S =(-1/7)^0+(-1/7)^1+....+(-1/7)^2007
S=(-1/7)0+(-1/7)1+...+(-1/7)2007
-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008
-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]
-8/7.S=(-1/7)2008-(-1/7)0
-8/7.S=(1/7)2008-1
.........................
a) Tính tổng: S = (-1/7)0 + (-1/7)1 + (-1/7)2 +...+ (-1/7)2007
b) Thực hiện phép tính: M = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) +...+ 1/16*(1+2+3+...+16)
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
Tính S = \(\left(\frac{-1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+.....+\left(-\frac{1}{7}\right)^{2016}\)
S= -(1/7^0 + 1/7^1+ 1/7^2 + 1/7^3 +...+ 1/7^2016)
Xét A = 1/7^0 + 1/7^1 + 1/7^2 + 1/7^3 +...+ 1/7^2016
=>7A= 7 + 1/7^0 + 1/7^1 + ...+ 1/7^2015
=> 6A = 7 - 1/7^2016
=> A = (7 - 1/7^2016)/6
=>S=-(7-1/7^2016)/6