Chứng minh rằng A = 2 + 2^2 + 2^3 +........+2 ^ 120 chia hết cho 7
cho A bằng 2 mũ 1 + 2 mũ 2 +2 mũ 3 + ..... + 2 mũ 120
chứng minh rằng A chia hết cho 7
chứng minh rằng A chia hết cho 31
chứng minh rằng A chia hết cho 217
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
Cho A = 2+2 mũ 2+2 mũ 3+......+2 mũ 119 + 2 mũ 120
a) Chứng minh rằng A chia hết cho 3
b) Chứng minh rằng A chia hết cho 7
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
Cho A = 7 + 7^2 + 7^3 + ... + 7^119 + 7^120. chứng minh rằng a chia hết cho 57
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
A =7(1+7+72)+74(1+7+72)+...+7118(1+7+72)A=7(1+7+72)+74(1+7+72)+...+7118(1+7+72)
=57 (7+74+...+7118)⋮57
Chứng minh rằng B=2+2^2+2^3+2^4+...+2^120 cùng chia hết cho 7; 15 và 31
Chứng minh rằng A = 2 +2^2 + 2^3 + ........ +2 ^ 120 chia hết cho 17
Đặt :
�
=
2
1
⋅
3
+
2
3
⋅
5
+
2
5
⋅
7
+
.
.
.
+
2
99
⋅
101
A=
1⋅3
2
+
3⋅5
2
+
5⋅7
2
+...+
99⋅101
2
�
−
2
1
⋅
3
=
2
3
⋅
5
+
2
5
⋅
7
+
.
.
.
+
2
99
⋅
101
A−
1⋅3
2
=
3⋅5
2
+
5⋅7
2
+...+
99⋅101
2
2
�
−
2
1
⋅
3
=
2
3
−
2
5
+
2
5
−
2
7
+
2
7
−
.
.
.
+
2
99
−
2
101
2A−
1⋅3
2
=
3
2
−
5
2
+
5
2
−
7
2
+
7
2
−...+
99
2
−
101
2
2
�
−
2
3
=
2
3
−
2
101
2A−
3
2
=
Đặt :
�
=
2
1
⋅
3
+
2
3
⋅
5
+
2
5
⋅
7
+
.
.
.
+
2
99
⋅
101
A=
1⋅3
2
+
3⋅5
2
+
5⋅7
2
+...+
99⋅101
2
�
−
2
1
⋅
3
=
2
3
⋅
5
+
2
5
⋅
7
+
.
.
.
+
2
99
⋅
101
A−
1⋅3
2
=
3⋅5
2
+
5⋅7
2
+...+
99⋅101
2
2
�
−
2
1
⋅
3
=
2
3
−
2
5
+
2
5
−
2
7
+
2
7
−
.
.
.
+
2
99
−
2
101
2A−
1⋅3
2
=
3
2
−
5
2
+
5
2
−
7
2
+
7
2
−...+
99
2
−
101
2
2
�
−
2
3
=
2
3
−
2
101
2A−
3
2
=
3
2
−
101
2
2
�
−
2
3
=
196
303
2A−
3
2
=
303
196
�
−
2
3
=
98
303
A−
3
2
=
303
98
�
=
98
303
+
2
3
=
100
101
A=
303
98
+
3
2
=
101
100
3
2
−
101
2
2
�
−
2
3
=
196
303
2A−
3
2
=
303
196
�
−
2
3
=
98
303
A−
3
2
=
303
98
�
=
98
303
+
2
3
=
100
101
A=
303
98
+
3
2
=
101
100
Chứng minh rằng:
c) (1+2+2^2+2^3+...+2^120) chia hết cho 3
d) (1+2+2^2+2^3+...+2^120) chia hết cho 15
k cho minh nha bạn
c) =(1+2)+(2^2+2^3)+(2^4+2^5)+...+(2^119+2^200)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+...+2^119.(1+2)
=1.3+2^2.3+2^4+...+2^199.3 hiển nhiên sẽ chia hết cho 3
Câu d làm tương tự nhưng bạn phải giép 4 lũy thừa để được 15
giúp mình với mai đi học rùi bạn nào biết làm chỉ mình cách cụ thể nha ! giúp nha gấp lắm
Bài 1 : tìm N thuộc N , biết :
a) 1<2^n < 128
b) 9 , 3^n < 729
c) 1 <=3^2n <= 27 ^ 2
BÀi 2 : chứng minh rằng
a) 5^7 - 5^6 + 5^5 chia hết cho 21
b) 7^6 + 7^5 - 7^4 chia hết cho 77
Bài 3 : chứng minh rằng
a)5+ 5^2 + 5^3 + 5^4 .....+ 5^120 chia hết cho 156
b) 1 + 7 + 7^2 + 763 +....+ 7^98 chia hết cho 57
Bài 4 : chứng minh rằng
a) 1+2+ 2^2 + 2^3 + 2^4 +......+ 2 ^ 63 = 2 ^ 64-1
A = 2 + 22 + ... + 2120
Chứng minh A chia hết cho 3, A chia hết cho 7, A chia hết cho 15
A = 2 + 22 + ... + 2120
Chứng minh chia hết cho 3
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 2119 + 2120 )
= 2( 1 + 2 ) + 23( 1 + 2 ) + ... + 2119( 1 + 2 )
= 2.3 + 23.3 + ... + 2119.3
= 3( 2 + 23 + ... + 2119 ) chia hết cho 3 ( đpcm )
Chứng minh chia hết cho 7
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 2118 + 2119 + 2120 )
= 2( 1 + 2 + 22 ) + 24( 1 + 2 + 22 ) + ... + 2118( 1 + 2 + 22 )
= 2.7 + 24.7 + ... + 2118.7
= 7( 2 + 24 + ... + 2118 ) chia hết cho 7 ( đpcm )
Chứng minh chia hết cho 15
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 2117 + 2118 + 2119 + 2120 )
= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 2117( 1 + 2 + 22 + 23 )
= 2.15 + 25.15 + ... + 2117.15
= 15( 2 + 25 + ... + 2117 ) chia hết cho 15 ( đpcm )
1) Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3
2) Ta có: \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)
\(A=7\left(2+2^4+...+2^{118}\right)\) chia hết cho 7
3) Ta có: \(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\)
\(A=15\left(2+2^5+...+2^{117}\right)\) chia hết cho 15
cho A bằng 21 +22+ 23 + .......... + 2120
a, chứng tỏ rằng A chia hết cho 7
b, chứng tỏ rằng A chia hết cho 31
c, chứng tỏ rằng A chia hết cho 217
cảm ơn ^-^