Giải phương trình S3 + 15S + 14 = 0
s^3 - 15s + 14 =0
GIẢI Phương trình dùm mình đi
s3-15s+14=0
=>s3-s-14s+14=0
=>s(s2-1)-14(s-1)=0
=>s(s-1)(s+1)-14(s-1)=0
=>[s(s+1)-14](s-1)=0
=>s-1=0=>s=1
hoặc s(s+1)-14=0
=>s(s+1)=14 (vô lí)
vậy s=1
s3-15s+14=0
<=>(s3-s)-(14s-14)=0
<=>s(s-1)(s+1)-14(s-1)=0
<=>(s-1)(s2+s-14)=0
<=>s-1=0<=>s=1
hoặc s2+s-14=0
<=>(s+1/2)2-14,25=0
<=>(s+1/2)2=14,25
<=>\(s+\frac{1}{2}=_-^+\sqrt{14,25}\Leftrightarrow s=_-^+\sqrt{14,25}-\frac{1}{2}\)
Giải phương trình:
\(4x^2+8\sqrt{x-1}=14-3x\)
Giải CHI TIẾT phương trình này bằng phương pháp tạo \(A^2+B^2=0\) hoặc \(A^2-B^2=0\) hộ mình cái ạ!
Đk: \(x\ge1\)
\(\Leftrightarrow4\left(2\sqrt{x-1}-1\right)+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
\(\Leftrightarrow x=\dfrac{5}{4}\)(Dễ thấy ngoặc to lớn hơn 0 với \(x\ge1\))
Muốn giải mấy bài kiểu này thì mình hay đoán nghiệm trước
Việc đoán nghiệm thì có thể dùng kinh nghiệm hoặc bấm máy tính
Ở đây mình đoán được nghiệm là x=5/4 nên ta sẽ cố gắng tạo ra nhân tử dạng
4x-5 hoặc x-(5/4) ở đầy mình chọn nhân tử 4x-5
Trong những phương trình chứa căn thức thì để tạo nhân tử thì cách thường dùng nhất là phép liên hợp
Phép liên hợp là phép kiểu: \(\sqrt{a}-\sqrt{b}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
Ok, ta biến đổi pt lại để tạo nhân tử 4x-5:
\(\left(8\sqrt{x-1}-4\right)+\left(4x^2+3x-10\right)=0\) (ở đây ta thay x=5/4 vào 8căn(x-1) thì được 4 nên ta sẽ ghép với 4, còn phần còn lại của pt thì gộp lại chung)
\(\dfrac{4\left(2\sqrt{x-1}-1\right)\left(2\sqrt{x-1}+1\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)(sử dụng phép liên hợp)
\(\Leftrightarrow\dfrac{4\left(4x-5\right)}{2\sqrt{x-1}+1}+\left(4x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(\dfrac{4}{2\sqrt{x-1}+1}+x+2\right)=0\)
Ở đây thì với đk x>=1 thì ngoặc to sẽ lớn hơn 0 nên kêt luận x=5/4
Giải các phương trình sau: -2x + 14 = 0
Giải các phương trình sau 2x - 14 = 0.
2x – 14 = 0
⇔ 2x = 14
⇔ x = 7
Vậy phương trình có 1 nghiệm x = 7
giải bất phương trình
(-7x+14)/(x+5)(2x-3)>0
\(\dfrac{-7x+14}{\left(x+5\right)\left(2x-3\right)}>0\) (1)
ĐKXĐ: \(x\ne-5;x\ne\dfrac{3}{2}\)
BPT (1) \(\Leftrightarrow\dfrac{-7\left(x-2\right)}{\left(x+5\right)\left(2x-3\right)}>0\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+5\right)\left(2x-3\right)}< 0\)
*Th1: \(\left\{{}\begin{matrix}x-2>0\\\left(x+5\right)\left(2x-3\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>2\\-5< x< \dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow2< x< \dfrac{3}{2}\) (vô lí)
*Th2: \(\left\{{}\begin{matrix}x-2< 0\\\left(x+5\right)\left(2x-3\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 2\\\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2>x>\dfrac{3}{2}\\x< -5\end{matrix}\right.\)
Vậy:....
Giải phương trình
\((x^2+2x)^2\) - 14\((x^2+2x) -15=0\)
\(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)\left(x+1\right)^2=0\)
hay \(x\in\left\{-5;3;-1\right\}\)
giải phương trình: \(\sin2x+3\cos2x+8\sin x+14\cos x+11=0\)
Giải các phương trình sau:
a.{3x + 2y = 14
5x + 3y = 1
b.{-x + 2y - 6 = 0
5x - 3y - 5 = 0
a: Ta có: \(\left\{{}\begin{matrix}3x+2y=14\\5x+3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+10y=70\\15x+9y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=67\\3x=14-2y=14-2\cdot67=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\y=67\end{matrix}\right.\)
b: Ta có: \(\left\{{}\begin{matrix}-x+2y-6=0\\5x-3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5x+10y=30\\5x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\2y-x=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=4\end{matrix}\right.\)
3 √(2x + 7) + √(1 - 5x) + 2x^2+x-14=0
(giải phương trình)