Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Thắng Nguyễn
17 tháng 6 2016 lúc 11:06

a)Ta thấy:

\(-\left|\frac{1}{3}x+2\right|\le0\)

\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)

\(\Rightarrow B\le5\)

Dấu "=" xảy ra khi x=-6

Vậy MaxB=5<=>x=-6

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:

\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)

Vậy MinC=2<=>x=6 hoặc -10

Nguyễn Tùng Chi
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Trần Tuấn Hoàng
11 tháng 2 2023 lúc 20:24

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Tiến Hoàng Minh
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 22:03

Biểu thức không có max. Bạn coi lại đề.

Akai Haruma
10 tháng 1 2022 lúc 22:15

À ha sorry bạn. Mình quên mất điều kiện $x$ nguyên.

Xét 2 TH sau:

TH1: $x>2$:

$B=\frac{x-1}{x-2}=1+\frac{1}{x-2}$

Để $B$ max thì $\frac{1}{x-2}$ max $\Leftrightarrow x-2$ min 

Vậy $x-2$ phải là số nguyên dương bé nhất, tức là $x-2=1$

$\Leftrightarrow x=3$

Khi đó: \(B_{\max}=\frac{3-1}{|3-2|}=2(*)\)

TH2: $x< 2$

$B=\frac{x-1}{2-x}=-(1+\frac{1}{x-2})$
Để B max thì $1+\frac{1}{x-2}$ min 

$\Leftrightarrow x-2$ max. Mà $x<2$ nên $x-2$ phải là số nguyên âm lớn nhất 

$\Leftrightarrow x-2=-1$

$\Leftrightarrow x=1$

Khi đó: $B=0(**)$

Từ $(*); (**)\Rightarrow B_{\max}=2$ khi $x=3$

chibicute
Xem chi tiết
Nguyễn Đình Toàn
25 tháng 4 2018 lúc 11:45

GTLN = 3

x = 1 

chibicute
25 tháng 4 2018 lúc 11:46

cách làm là gì bạn ơi

Lục Bảo
25 tháng 4 2018 lúc 12:12

Đặt \({x+2}\over|x|\)=A

ĐKXĐ: x khác 0

x nguyên; x khác 0 -> Xét 2 trường hợp:

_Th1: x>0 (hay x>=1)-> |x|=x thay vào đc:

A=\({x+2}\over x\)=\(1+{2\over x}\) <= 3 (do x>=1 -> \(2\over x\)<=2). (1)

Dấu '=' xảy ra khi x=1

_Th2: x<0 (hay x<=-1) -> |x|=-x thay vào đc:

A=\({x+2}\over -x\)\(={-1-{2\over x}}\) <= -3 (do x<= -1 ->\(2\over x \)>= -2.(2)

Dấu '=' xảy ra khi x=-1

Từ (1),(2) -> GTLN A=3 khi x=1

Lê Phương Trà
Xem chi tiết
☆MĭηɦღAηɦ❄
3 tháng 4 2020 lúc 17:30

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

Khách vãng lai đã xóa
Phạm Quốc Anh
Xem chi tiết
Vũ Quý Đạt
8 tháng 1 2017 lúc 8:59

Ta chia ra hai trường hơp 

*x âm

\(\Rightarrow C=-1+\frac{2}{\left|X\right|}\)nhunwng vì âm nhỏ hơn dương nên x đương thì C lớn nhất

suy ra C=1+2/x

để C lớn nhất

2/x lớn nhất

x nhỏ nhất hay x=1

SUy ra MAX C=3

minhtien
19 tháng 12 2017 lúc 21:17

I donot no

nnnnnnnnnnnnnnooooooooooooooooooooooooooooooooooo

Lê Thị Trà MI
Xem chi tiết