Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanhphong
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 2 2019 lúc 12:46

\(\Leftrightarrow\left|x-1+\left(x-2y\right)^2+\left(y-3z\right)^2\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)

Để cho gọn, đặt \(\left(x-2y\right)^2+\left(y-3z\right)^2=a\ge0\)

\(\Rightarrow\left|x-1+a\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)

- Nếu \(x-1>0\Rightarrow VT=\left|x-1+a\right|>x-1\)

\(\left|\left(x-1\right)\left(2-x\right)\right|\ge0\Rightarrow VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)

\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

- Nếu \(x-1< 0\Rightarrow VT=\left|x-1+a\right|\ge0\)

\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|< 0\) do \(\left\{{}\begin{matrix}x-1< 0\\\left|\left(x-1\right)\left(2-x\right)\right|\ge0\end{matrix}\right.\)

\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

Vậy \(x=1\), khi đó pt trở thành:

\(\left|\left(1-2y\right)^2+\left(y-3z\right)^2\right|=0\Leftrightarrow\left\{{}\begin{matrix}1-2y=0\\y-3z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\z=\dfrac{1}{6}\end{matrix}\right.\)

Vậy pt đã cho có bộ nghiệm duy nhất \(\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{6}\right)\)

Nguyễn Việt Lâm
23 tháng 2 2019 lúc 12:52

Biện luận thiếu 1 chút rồi, ở dòng 4 có dấu "=", nên sửa từ dòng 4 đến dòng 6 bằng đoạn này:

\(x-1>0\Rightarrow VT=\left|x-1+a\right|\ge x-1\)

\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)

\(\Rightarrow VT\ge VP\), dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x>1\\a=0\\\left(x-1\right)\left(2-x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(x-2y\right)^2=0\\\left(y-3z\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=\dfrac{1}{3}\end{matrix}\right.\)

Vỹ Ly
Xem chi tiết
_Guiltykamikk_
14 tháng 6 2018 lúc 10:57

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

_Guiltykamikk_
14 tháng 6 2018 lúc 11:03

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

do thi phuong nhung
Xem chi tiết
do thi phuong nhung
7 tháng 1 2016 lúc 13:20

Khó quá do thi phuong nhung

Thư Nguyễn Anh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:30

\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra

Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 14:34

\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
29 tháng 8 2021 lúc 14:39

\(M=2x^2+9y^2-6xy-6x-12y+2028=\left(x+2\right)^2-6y\left(x+2\right)+9y^2+\left(x-5\right)^2+1999=\left(x+2-3y\right)^2+\left(x-5\right)^2+2019\ge1999\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{7}{3}\end{matrix}\right.\)

\(N=x^2-4xy+5y^2+10x-22y+28=\left(x+5\right)^2-4y\left(x+5\right)+4y^2+\left(y-1\right)^2+2=\left(x+5-2y\right)^2+\left(y-1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Phúc Thịnh Nguyễn
Xem chi tiết
An Nguyễn Đức
24 tháng 11 2017 lúc 21:10

Mình đang bận nên chỉ nói hướng làm thôi nhá. GTNN thì bạn cộng trừ 1, còn GTLN thì bạn cộng trừ 6. Sau đó bạn sẽ tách ra được thành a+(2x^2+y^2)/x^2+y^2 

Phan Nguyễn Ngọc Hân
Xem chi tiết
Lê Thủy Vân
Xem chi tiết
im vampire
30 tháng 10 2016 lúc 16:59

hjvbm 

zZz Cool Kid_new zZz
28 tháng 8 2020 lúc 18:06

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)

Đẳng thức khó tìm quá huhu

Khách vãng lai đã xóa