Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Võ Thảo VY

Giai phương trình:

\(\left|x^2+5y^2+9z^2+x-4xy-6yz-1\right|+1=x-\left|2-x^2-x\right|\)

Nguyễn Việt Lâm
23 tháng 2 2019 lúc 12:46

\(\Leftrightarrow\left|x-1+\left(x-2y\right)^2+\left(y-3z\right)^2\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)

Để cho gọn, đặt \(\left(x-2y\right)^2+\left(y-3z\right)^2=a\ge0\)

\(\Rightarrow\left|x-1+a\right|=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\)

- Nếu \(x-1>0\Rightarrow VT=\left|x-1+a\right|>x-1\)

\(\left|\left(x-1\right)\left(2-x\right)\right|\ge0\Rightarrow VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)

\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

- Nếu \(x-1< 0\Rightarrow VT=\left|x-1+a\right|\ge0\)

\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|< 0\) do \(\left\{{}\begin{matrix}x-1< 0\\\left|\left(x-1\right)\left(2-x\right)\right|\ge0\end{matrix}\right.\)

\(\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm

Vậy \(x=1\), khi đó pt trở thành:

\(\left|\left(1-2y\right)^2+\left(y-3z\right)^2\right|=0\Leftrightarrow\left\{{}\begin{matrix}1-2y=0\\y-3z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\z=\dfrac{1}{6}\end{matrix}\right.\)

Vậy pt đã cho có bộ nghiệm duy nhất \(\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{6}\right)\)

Nguyễn Việt Lâm
23 tháng 2 2019 lúc 12:52

Biện luận thiếu 1 chút rồi, ở dòng 4 có dấu "=", nên sửa từ dòng 4 đến dòng 6 bằng đoạn này:

\(x-1>0\Rightarrow VT=\left|x-1+a\right|\ge x-1\)

\(VP=x-1-\left|\left(x-1\right)\left(2-x\right)\right|\le x-1\)

\(\Rightarrow VT\ge VP\), dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x>1\\a=0\\\left(x-1\right)\left(2-x\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(x-2y\right)^2=0\\\left(y-3z\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=\dfrac{1}{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Trọng Chiến
Xem chi tiết
Hàn Vũ
Xem chi tiết
Angela jolie
Xem chi tiết
TTTT
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Thơ Trần
Xem chi tiết
Big City Boy
Xem chi tiết
Angela jolie
Xem chi tiết