Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:04

a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)

c: Ta có: \(P< \dfrac{1}{2}\)

\(\Leftrightarrow P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

tranthuylinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 8 2021 lúc 15:41

ĐKXĐ: \(x\ge0;x\ne4\)

\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)

c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)

\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)

d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)

\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:20

a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b: Thay x=36 vào A, ta được:

\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)

c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)

\(\Leftrightarrow4\sqrt{x}=2\)

hay \(x=\dfrac{1}{4}\)

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:22

d: Để A>0 thì \(\sqrt{x}-2>0\)

hay x>4

e: Để A nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;2;-2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;4;0\right\}\)

hay \(x\in\left\{1;9;16;0\right\}\)

trần gia bảo
Xem chi tiết
Nguyên Hoàng
Xem chi tiết

 

ĐKXĐ: x>=0; \(x\notin\left\{9;4\right\}\)\(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Để P là số nguyên thì \(3⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5\right\}\)

=>\(x\in\left\{9;1;25\right\}\)

Kết hợp ĐKXĐ, ta được; \(x\in\left\{1;25\right\}\)

Akai Haruma
29 tháng 1 lúc 22:19

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9; x\neq 4$

\(P=\frac{-3\sqrt{x}+9}{x-9}: \left[\frac{9-x}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}-2)(\sqrt{x}+3)}-\frac{(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\right]\)

\(=\frac{-3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{9-x+x-9-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}\\ =\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)

Với $x\in\mathbb{Z}$, để $P$ nguyên thì $\sqrt{x}-2$ là ước nguyên của 3

$\Rightarrow \sqrt{x}-2\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow \sqrt{x}\in \left\{3; 1; 5; -1\right\}$

$\Rightarrow x\in \left\{9; 1; 25\right\}$

Theo ĐKXĐ suy ra $x=1$ hoặc $x=25$

Thu
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 10 2021 lúc 8:39

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 8:46

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 10:36

loading...

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 9:35

P nguyên

=>1 chia hết cho căn3x -2

=>căn(3x)-2=1 hoặc căn(3x)-2=-1

=>căn3x=3 hoặc căn3x=1

=>3x=1 hoặc 3x=9

=>x=3 hoặc x=1/3(loại)

Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 10:36

loading...