So sánh:
\(A=\frac{3^{10}+1}{3^9+1}vàB=\frac{3^9+1}{3^8+1}\)
So sánh :
a)\(\frac{3}{124},\frac{1}{41},\frac{5}{207},\frac{2}{83}\)
b)\(\frac{-2525}{2929}và\frac{-217}{245}\)
c)\(A=\frac{3^{10}+1}{3^9+1}vàB=\frac{3^9+1}{3^8+1}\)
d)\(\frac{27}{82}và\frac{26}{75}\)
Bài 1:Chứng tỏ rằng các phân số sau tối giản với mọi n
\(a,\frac{n+1}{2n+3}\) \(b,\frac{2n+3}{4n+8}\) \(c,\frac{2n+1}{3n+2}\)
Bài 2: So sánh các phân số sau:
\(a,A=\frac{54.107-53}{53.107+54}vàB=\frac{135.269-133}{134.269+135}\)
\(b,A=\frac{3^{10}+1}{3^9+1}vàB=\frac{3^9+1}{3^8+1}\)
bài 2
a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54
<=>
\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1
Bài 1 :
\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(2n+2-2n-3⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)
Do đó :
\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Ta có :
\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right)107-53}{53.107+54}=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right)269-133}{134.269+135}=\frac{134.269+269-133}{134.269+135}=1+\frac{1}{134.269+135}>1\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Bài 1: So sánh lũy thừa
a) 125^80 và 25^125
b) 31^11 và 17^14
c) \(A=\frac{19^{30}+5}{19^{31}+5}vàB=\frac{19^{31+5}}{19^{32}+5}\)
d)\(A=\frac{2^{18}-3}{2^{20}-3}vàB=\frac{2^{20-3}}{2^{22}-3}\)
e) \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}vàB=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
Bài 2: Cho \(A=1+2+2^2+...+2^{30}\)
Viết A+1 dưới dạng lũy thừa
2) A=1+2+22+...+230=>2A=2+22+23+...+231
=>2A-A=A=(2+22+...+231)-(1+2+22+...+230)=231-1
=>A+1=(231-1)+1=231-(1-1)=231-0=231
lm xog chc'..............................................ặc ặc
So sánh :
\(A=\frac{20^{10}+1}{20^{10}-1}vàB=\frac{20^{10-1}}{20^{10}-3}\)
Ta có:
\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Ta lại có:
\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)
Hay A<B
So sánh A với 1.
Biết: \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{8}{9!}+\frac{9}{10!}\)
so sánh\(A=\frac{20^{10}+1}{20^{10}-1}vàB=\frac{20^{10}-1}{20^{10}-3}\)
A=20^10+1/20^10-1=1*2/20^10-1
B=20^10-1/20^10+3=1*2/20^10-3
vi 20^10-1>20^10-3
Suy ra 2/20^10-1<2/20^10-3
\(Cho A=\frac{3^{10}+1}{3^9+1};B=\frac{3^9+1}{3^8+1}\)
so sánh A và B = 4 cách
hép mi
So sánh
A = \(\frac{3^{10}+1}{3^9+1}\) và B = \(\frac{3^9+1}{3^8+1}\)
ta có
A/B=3^10+1/3^9+1 : 3^9+1/3^8+1
A/B=3^10+1/3^9+1 . 3^8+1/+3^9+1
A/B=(3^10+1).(3^8+1)/(3^9+1).(3^9+1)
A/B=3^18+3^10+3^8+1/3^18+3^9+3^9+1
Ta so sánh 3^10+3^8 và 3^9+3^9
3^8.(3^2+1) và 3^8.(3+3)
3^8.10 và 3^8.6
vì 3^8.10 > 3^8.6
nên A>B
cho biểu thức :
A=\(\frac{1+9^2+9^3+...+9^{2010}}{1+9+9^2+...+9^{2009}}\)
B=\(\frac{1+5^1+...+5^{2010}}{1+5+5^2+...+5^{2009}}\)
so sánh A vàB
A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)= \(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)= \(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)
B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)= \(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)= \(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Do \(\frac{1}{9^{2010}}