Tìm max của \(P=2x+\sqrt{1-4x-x^2}\)
gợi ý : dùng bđt cô si
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
tìm max: căn(2-x)+căn(x+10)
dùng bđt cô si, bun hia em làm dc r. khổ thân em thằng lớp 7 phải làm bài l9
Chứng minh rằng \(2\sqrt{\frac{a}{b}}+3\sqrt[3]{\frac{b}{a}}\ge5\forall a,b>0\)
(Cô có cho tớ gợi ý: Sử dụng BĐT Cô-si)
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
Cho biểu thức \(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tìm GTNN của P
c) Tìm giá trị nguyên của x để P có giá trị nguyên
Gợi ý : dùng bđt Schwarz và bđt Cauchy
Tự tìm ĐKXĐ nhé
\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)
\(\Rightarrow x=\left\{0\right\}\)
Kết hợp với ĐKXĐ =>...
tìm GTNN (giúp mik zs mik cần gấp)
Q=\(\frac{2x}{x^2+x+1}\)
( dùng bđt Cô-si)
tìm GTNN ( dùng cô si)
A=\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)+\(\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\)
\(-----------\)
Đặt \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và \(t=\sqrt{x}\) \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi \(x>0\)
Khi đó, ta biểu diễn lại \(\alpha\) dưới dạng biến số \(t\) như sau:
\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)
nên \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\) với mọi \(t>0\) \(\Rightarrow\) \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\) (do \(\Delta_t>0\) )
Dấu \("="\) xảy ra khi và chỉ khi \(2t^2-3t-3=0\)
Ta thành lập biệt thức \(D=b^2-4ca\) với tập xác định của pt là \(t\in\left(0;\infty\right)\) như sau:
\(\Delta_t=3^2+4.2.3=33\)
Do đó, ta tính được \(t_1=\frac{3-\sqrt{33}}{4};\) \(t_2=\frac{3+\sqrt{33}}{4}\)
Nhưng ta chỉ chấp nhận
\(t=\frac{3+\sqrt{33}}{4}\) (do điều kiện \(\left(i\right)\) ) làm nghiệm duy nhất của pt.
\(\Rightarrow\) \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
\(-----------\)
Mặt khác, ta lại áp dụng bđt \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:
\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\) \(\alpha=3\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Vậy, \(A_{min}=\frac{10}{3}\) \(\Leftrightarrow\) \(x=\frac{21+3\sqrt{33}}{8}\)
Điều kiện x>0
Đặt a = 4x2 + 9x + 18 √x +9
b = 4x√x + 4x
Từ đó ta có A = a/b + b/a >= 2
Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a
Phần còn lại bạn tự làm nha
Tìm GTLN, GTNN của biểu thức M=2x + \(\sqrt{5-x^2}\)
(CÔ MINK NÓI DÙNG BĐT BU-NHI-ACOP-XKI)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopsky:
\(M^2=(2x+\sqrt{5-x^2})^2\leq (2^2+1)(x^2+5-x^2)=25\)
\(\Rightarrow M\leq 5\) hay \(M_{\max}=5\Leftrightarrow x=2\)
Tìm min:
Ta thấy \(5-x^2\geq 0\Rightarrow x^2\leq 5\rightarrow x\geq -\sqrt{5}\)
Do đó: \(M=2x+\sqrt{5-x^2}\geq =-2\sqrt{5}+0=-2\sqrt{5}\)
\(\Rightarrow M_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)
Tìm GTLN, GTNN của biểu thức M=2x + \(\sqrt{5-x^2}\)
(CÔ MINK NÓI DÙNG BĐT BU-NHI-ACOP-XKI)
Chứng minh :
a2 + b2 + 1 \(\ge\)ab + a + b
Gợi ý : tách hạng tử và áp dụng BĐT Cô-si
cái này chính là BĐT \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
với c=1 tì ta luôn có ĐPCM