Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Adu vip
Xem chi tiết
Hai, Anh Nguyen
Xem chi tiết
Hai, Anh Nguyen
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 15:14

a.

\(x=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\) \(\Rightarrow\sqrt{x}=\sqrt{5}+1\)

 \(\Rightarrow B=\dfrac{\sqrt{5}+1-1}{2+\sqrt{5}+1}=\dfrac{\sqrt{5}}{\sqrt{5}+3}=\dfrac{3\sqrt{5}-5}{4}\)

b.

\(B=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

B nguyên \(\Rightarrow\dfrac{3}{\sqrt{x}+2}\in Z\Rightarrow\sqrt{x}+2=Ư\left(3\right)\)

Mà \(\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=3\)

\(\Leftrightarrow\sqrt{x}=1\Rightarrow x=1\)

Thanh Dii
Xem chi tiết
do phuong nam
27 tháng 11 2018 lúc 18:03

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 10:59

P=A*B

\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)

P nguyên

=>x-4-3 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-3)

=>căn x+2=3

=>x=1

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 23:10

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:38

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

Trang Nguyễn
Xem chi tiết
An Thy
10 tháng 7 2021 lúc 8:54

a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)

 

Laku
10 tháng 7 2021 lúc 9:04

undefinedundefined

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 11:38

a) Ta có: \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)

Aocuoi Huongngoc Lan
Xem chi tiết
nthv_.
18 tháng 10 2021 lúc 22:12

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

Nguyễn Lê Phước Thịnh
18 tháng 10 2021 lúc 22:20

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)