Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Please movies of all tim...
Xem chi tiết
Nguyễn Tuấn Tài
27 tháng 10 2015 lúc 19:33

Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )

Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )

 Nếu a = 5k thì suy ra a chia hết cho 5 

 Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5

 Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5 

 Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5

Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5 

=>trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( đpcm).

keo ngot ko
27 tháng 10 2015 lúc 19:38

Nguyễn Văn Tân thik lik e đến thế cơ ak

Nguyễn Văn Tân
27 tháng 10 2015 lúc 19:31

 ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh 

tích cho em nhé OLM 

Thien Tien Chu
Xem chi tiết
Lê Quang Phúc
7 tháng 8 2017 lúc 7:01

ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh 
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh 

Thien Tien Chu
7 tháng 8 2017 lúc 7:04

cam on 

cho ban 1 k ne

OoO_Nhok_Lạnh_Lùng_OoO
15 tháng 10 2017 lúc 21:22

Giải như bên dưới nha

                      Giải

Ta có :

5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minh 
pe_mèo
Xem chi tiết

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

Nguyễn Đại Việt
Xem chi tiết
OoO Kún Chảnh OoO
17 tháng 10 2015 lúc 16:22

Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
+ Nếu a = 5k thì suy ra a chia hết cho 5 
+ Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
+ Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5 
+ Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5 
Vậy : trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( điều phải chứng minh ).

 

Lương Minh Anh
Xem chi tiết
Magic Super Power
13 tháng 11 2016 lúc 9:38

Vì số chia hết cho 5 là số có tận cùng là 0 hoặc 5

mà chỉ có 1;2;3;4;5;6;7;8;9 là số tận cùng

=> Trong 5 stn liên tiếp luôn có só chia hết cho 5

Ngô Phương Linh
Xem chi tiết
Biện bạch Hiền
Xem chi tiết
trần văn giang
Xem chi tiết
Huyền Đoàn
Xem chi tiết
OoO Kún Chảnh OoO
2 tháng 12 2015 lúc 18:30

Bốn số tự nhiên liên tiếp khi chia cho 4 sẽ được 4 số dư khác nhau. 
Tức là ngoài số dư là 1, 2, 3 phải có một phần dư là 0 
Kết luận: luôn tồn tại 1 số chia hết cho 4. 

Có thể suy luận bằng cách giả sử: 
n, (n+1), (n+2), (n+3) 

1.Nếu n chia hết cho 4 => ĐPCM 
2. nếu n chia 4 dư 1 => (n+3) sẽ chia hết cho 4 
3. nếu n chia 4 dư 2 => (n+2) sẽ chia hết cho 4 
4. nếu n chia 4 dư 3 => (n+1) sẽ chia hết cho 4

Thanh Hiền
2 tháng 12 2015 lúc 18:30

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm