Ta có 5 số tn liên tiếp là n;n+ 1; n + 2; n + 3; n + 4 nếu n chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 1 => n + 4 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 2 => n + 3 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh.
Nếu n chia cho 5 dư 4 => n + 1 chia hết cho 5 => điều phải chứng minh.
Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
+ Nếu a = 5k thì suy ra a chia hết cho 5
+ Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
+ Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5
Vậy : trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( điều phải chứng minh ).
Giải
Ta có :
5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => điều phải chứng minh Nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => điều phải chứng minhChúc bn học giỏi nhé !!!
Gọi 5 số tự nhiên liên tiếp là :a,a+1,a+2,a+3,a+4 ( với a thuộc số tự nhiên )
Một số khi chia hết cho 5 thì có dạng tổng quát là :5k,5k+1,5k+2,5k+3,5k+4 ( với k thuộc số tự nhiên )
+ Nếu a = 5k thì suy ra a chia hết cho 5
+ Nếu a = 5k+1 thì suy ra a+4 = 5k+1+4 = 5k+5 chia hết cho 5
+ Nếu a = 5k+2 thì suy ra a+3 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+3 thì suy ra a+2 = 5k+2+3 = 5k+5 chia hết cho 5
+ Nếu a = 5k+4 thì suy ra a+1 = 5k+4+1 = 5k+5 chia hết cho 5
Vậy 5 số tự nhiên liên tiếp có 1 số chia hết cho 5 ( ĐPCM)